
The Hidden Cost of Readability: How Code Formatting Silently
Consumes Your LLM Budget

Dangfeng Pan
Monash University

Australia
dpan0026@student.monash.edu

Zhensu Sun
Singapore Management University

Singapore
zssun@smu.edu.sg

Cenyuan Zhang
Monash University

Australia
cenyuan.zhang@monash.edu

David Lo
Singapore Management University

Singapore
davidlo@smu.edu.sg

Xiaoning Du
Monash University

Australia
xiaoning.du@monash.edu

ABSTRACT
Source code is usually formatted with elements like indentation and
newlines to improve readability for human developers. However,
these visual aids do not seem to be beneficial for large languagemod-
els (LLMs) in the same way since the code is processed as a linear
sequence of tokens. Furthermore, these additional tokens can lead to
increased computational costs and longer response times for LLMs.
If such formatting elements are non-essential to LLMs, we can re-
duce such costs by removing them from the code. To figure out the
role played by formatting elements, we conduct a comprehensive
empirical study to evaluate the impact of code formatting on LLM
performance and efficiency. Through large-scale experiments on
Fill-in-the-Middle Code Completion tasks across four programming
languages (Java, Python, C++, C#) and ten LLMs—including both
commercial and open-source models—we systematically analyze to-
ken count and performance when formatting elements are removed.
Key findings indicate that LLMs can maintain performance across
formatted code and unformatted code, achieving an average input
token reduction of 24.5% with negligible output token reductions.
This makes code format removal a practical optimization strategy
for improving LLM efficiency. Further exploration reveals that both
prompting and fine-tuning LLMs can lead to significant reductions
(up to 36.1%) in output code length without compromising correct-
ness. To facilitate practical applications, we develop a bidirectional
code transformation tool for format processing, which can be seam-
lessly integrated into existing LLM inference workflows, ensuring
both human readability and LLM efficiency.

1 INTRODUCTION
Large Language Models (LLMs) have revolutionized software devel-
opment through their remarkable capabilities in code understand-
ing and code generation. When tasked with code generation or
completion, LLMs can interpret a developer’s intent from incom-
plete code snippets or natural language descriptions, producing
code suggestions that align closely with the developer’s expecta-
tions. Recently, advanced models such as GPT-4o and Gemini-1.5
have shown performance levels comparable to those of human pro-
grammers across a range of programming tasks and languages [22].
LLMs focus on the next-token-prediction task during pretraining,
where they learn from vast and diverse textual corpora and become
generalizable to various tasks and domains [32]. On the other hand,

this paradigm imposes restrictions on the representation of con-
tent, particularly for information dimensions that cannot be fully
or effectively captured in a linear fashion [6].

Code differs from natural language due to its structured nature.
Since code can be quite complex, adhering to appropriate coding
styles is crucial for ensuring readability. Specific conventions are
usually developed for programming in different languages, defining
coding rules that have been shown to be most beneficial for un-
derstanding and maintaining the code. Recommended code styles
visually enhance the identification of the code structure without
affecting the code semantics, thereby aiding in the comprehen-
sion of its meaning [36]. Formatting elements such as indentation,
whitespace, and newlines are commonly used to achieve this clarity.
However, these formatting practices can increase the overall length
of the code, leading to more tokens being processed by language
model tokenizers. The visual advantages of well-formatted code can
be lost in a linear representation of tokens, rendering the effort to
use formatting somewhat ineffective. Additionally, the extra tokens
consume a significant portion of the token budget in LLM-based
code generation.

To have a quantitative understanding of the contribution of for-
matting elements in token count, we carried out a preliminary study.
We randomly sampled 100,000 source files for each programming
language (Java, C#, and C++) from the Stack v2 [8] code datasets,
and measured their token counts using GPT-4o’s tokenizer. As a
comparison, we also measure the token count when the three types
of formatting elements - indentation, whitespace, and newline - are
removed. Notably, we only remove the ones that do not affect the
code semantics, i.e., the AST before and after the removal remains
the same. We demonstrate the effect of format removal for a Java
class definition in Figure 1. We can observe that the token count
is reduced from 60 to 47, indicating the formats incur 13 tokens’
redundancy in the representation. With the same measurement,
we observe a surprisingly non-marginal token reduction for all
three languages, with 14.7% for Java, 13.2% for C#, and 13.2% for
C++. Since LLMs operate on a token-by-token basis, the number
of tokens to be processed or generated directly impacts their infer-
ence efficiency, where most commercial LLM APIs charge based on
token count for both input and output [2, 17]. Given this non-trivial
overhead brought by formatting elements, it is critical to have a
clear understanding of the role they play in code representations
when being processed by LLMs.

https://orcid.org/0009-0004-1958-4314

Conference’17, July 2017, Washington, DC, USA Dangfeng Pan, Zhensu Sun, Cenyuan Zhang, David Lo, and Xiaoning Du

public class HelloWorld {\n
 public static void main(String[] args) {\n
 System.out.println("Hello, World!"); \n
 int a = 10; \n
 int b = 20; \n
 int sum = a + b; \n
\n
 System.out.println("Sum: " + sum); \n
 } \n
}

public class HelloWorld{public static void
main(String[]args){System.out.println("Hello,
World!");int a=10;int b=20;int
sum=a+b;System.out.println("Sum: "+sum);}}

Formatted Code Tokens: 60

Unformatted Code Tokens: 47

Figure 1: A comparison between formatted and unformatted
Java code snippet, tokenized by GPT-4o’s tokenizer. Continu-
ous characters with the same background color represent the
same token. The unformatted code is produced by remov-
ing indentation, whitespaces, and newlines while remaining
syntactic correctness.

To the best of our knowledge, there is still a limited understand-
ing of this topic. Different studies have reported differing find-
ings: some indicate that LLMs pay less attention to formatting
elements [41], while others suggest that seemingly insignificant
tokens may help LLMs make more informed decisions [20]. In a
recent paper [36], the authors introduce a simplified AI-oriented
Python grammar that removes both formatting elements and un-
necessary grammar tokens. However, it does not analyze the impact
of formatting elements and requires further pre-training to adapt
to the new grammar, leaving the effects of formatting elements
on already-trained LLMs unclear. To address this question more
effectively, a large-scale comprehensive experimental evaluation is
necessary. Instead of relying on attention measurements, a more
convincing approach would be to directly evaluate how model per-
formance changes when formatting elements are either included
or removed.

To fill this knowledge gap, we conduct a comprehensive empiri-
cal study to understand the role code formats play with respect to
LLM’s code generation capability. We employ a specific code com-
pletion task, the Fill-in-the-Middle (FIM), which shows the model a
piece of incomplete code with missing middle sections and instructs
it to generate the completion. It is a common task for nearly all
coding assistants in IDEs and can assess both the code understand-
ing and generation capabilities of the LLM. Our study will focus on
four widely-used programming languages: Java, Python, C++, and
C#, all of which are commonly mastered by most LLMs. We identify

the formatting elements that can be omitted for each language by
examining their lexer configurations and grammar rules. We select
elements categorized as non-essential or skippable, filter out those
related to comments or other non-code components, and retain
only the relevant elements for evaluation. Finally, we target three
formatting elements, i.e., indentation, whitespace, and newline. It
is important to note that our goal is to remove formatting elements
that do not contribute any semantic meaning, ensuring that the
code functionality conveyed by both the formatted and unformatted
code remains unchanged. The code before and after the removal is
respectively named as Formatted Code and Unformatted Code.
The study includes ten models: five commercial API-based models
and five open-weight models. We utilize McEval[4], a multilingual
dataset for FIM tasks, which encompasses all four programming
languages being studied and provides test cases for evaluation. Next,
we introduce the three RQs and summarize essential findings.

RQ1: Can LLM maintain their performance when handling
unformatted code, and how does code formatting impact
their efficiency? In this RQ, we explore how well LLMs can main-
tain their performance when formatting elements are removed from
the prompts of FIM tasks. Additionally, we are interested in whether
LLMs can adhere to the input code’s formatting style when gener-
ating answers. If they can, it suggests that LLMs tend to maintain a
consistent coding style during operations, which could be utilized
to create more efficient LLMs.
Findings. On average, across all settings, the performance of eval-
uated models remains largely unaffected by the removal of for-
matting. For example, DeepSeek-V3 shows minimal variation in
Pass@1 scores across all programming languages, with an aver-
age of 79.1% for formatted code and 80.0% for unformatted code.
Regarding inference efficiency, removing formatting elements sig-
nificantly reduces the number of input code tokens by 24.6%, while
the decrease in output code tokens is much smaller at only 2.9%.
This indicates that the model tends to generate code in a familiar
formatting style, regardless of that in the input. In summary, re-
moving formatting from the input has a minimal impact on the
performance of LLMs and improves inference efficiency. However,
the efficiency gain could be enhanced if the models become more
adaptable to different styles.

RQ2: What is the impact of each formatting element on
model performance and efficiency? Although removing all for-
matting elements has minimal performance impact, further abla-
tion studies are necessary to determine if significant variance exists
between the impact of different formatting elements. In this RQ,
through an ablation study, we assess the influence of removing one
type of formatting element at a time on token consumption and
model performance.
Findings. Unlike the removal of all formatting elements, remov-
ing individual formatting elements can introduce negative impacts
for some LLMs. Specifically, Claude and GPT-4 exhibit strong ro-
bustness, with performance variations (less than 1.6%) remaining
minimal, consistent with the findings when all formatting elements
are removed. In contrast, Gemini shows significant performance
drops when any single formatting element is removed, highlight-
ing its sensitivity to partially formatted styles. Additionally, while
removing single formatting elements can effectively reduce input

The Hidden Cost of Readability: How Code Formatting Silently Consumes Your LLM Budget Conference’17, July 2017, Washington, DC, USA

tokens, the reduction rate of output tokens remains low, similar
to the case of completely unformatted code. On average, output
tokens decrease by only 0.4% for Claude, 3.5% for Gemini, and 1.4%
for GPT-4 when individual formatting elements are removed. These
limited reductions in output tokens, coupled with the performance
degradation observed in Gemini, underscore the importance of
adapting LLMs to different formatting styles.

RQ3: How to enable LLMs to minimize token usage when
generating outputs? In RQ1 and RQ2, we demonstrated that LLMs
benefit from unformatted code input. However, these models still
prefer generating formatted code as output, regardless of the input
format, leading to unnecessary token usage for formatting. In RQ3,
we explore adapting models for producing token-efficient code in
the output, focusing on two cost-effective approaches: training-free
prompting and fine-tuning (on very few samples).
Findings. Prompting LLMs with clear instructions to generate un-
formatted output code can effectively reduce token usage while
maintaining performance. For instance, with a well-crafted prompt,
GPT-4o achieves a significant reduction in output tokens (an av-
erage of 27.2%) while maintaining performance in Java, C++, and
C#. However, prompting can fail if the instructions are ambiguous
or misinterpreted by the LLM. For example, Gemini often removes
elements in a way that violates syntax rules, leading to a sharp
decline in Pass@1 (e.g., from 67.2% to 11.1% in C++). Similarly, fine-
tuning with unformatted samples can also reduce output tokens
while preserving or even improving Pass@1. By fine-tuning with
just 50 unformatted Java code samples, Gemini and GPT-4o achieve
substantial reductions in output tokens (35.9% and 24.8%, respec-
tively) with statistically insignificant performance impact. Both
methods are feasible, and the choice between prompt engineering
and fine-tuning depends on the LLM’s use case and the user’s role.

These empirical results strongly suggest that code format can
be and should be removed when LLMs work with source code.
To this end, we propose a code transformation tool that enables
bidirectional conversion between formatted and unformatted code,
preserving program semantics while reducing token overhead. As
shown in Figure 2, this tool can transforms human-formatted code
into an unformatted, token-efficient representation for LLMprocess-
ing, and then reformats the LLM-generated output into a human-
readable format. It enables developers to work with familiar, well-
formatted code while LLMs work with token-efficient, unformatted
code. The tool currently supports four programming languages and
has been well tested through rigorous AST equivalence verification
across the entire McEval dataset. It demonstrates an average trans-
formation speed of 76ms per code sample, ensuring both semantic
preservation and efficient real-time processing.

The tool code and live demo are available at https://sites.google.
com/view/the-hidden-cost-of-readability. Our work makes several
key contributions:

• We reveal that using unformatted code can significantly reduce
token usage without compromising the performance of LLMs, of-
fering a practical optimization strategy for efficient LLM serving.

• We demonstrate that LLMs can be trained or instructed to pro-
duce token-efficient code, further enhancing their efficiency in
code generation tasks.

• We propose and implement a code transformation tool that fa-
cilitates bidirectional conversion between formatted and unfor-
matted code, allowing developers to work with human-readable
code while enabling LLMs to process code in a token-efficient
manner.

2 EXPERIMENTAL SETTING
In this section, we introduce the experimental setting for this
study, including the task, benchmark, evaluation metrics, LLMs,
format processing methods, and implementation details. Our study
is guided by three research questions:
• RQ1: Can LLMs maintain their performance when handling
unformatted code, and how does code formatting impact their
efficiency?

• RQ2: What is the impact of each formatting element on mode
performance and efficiency?

• RQ3: How to enable LLMs to minimize token usage when gener-
ating outputs?

2.1 Task and Benchmark
We choose the Fill-in-the-Middle (FIM) code completion task [13],
the most prevalent and practical code completion paradigm used
by commercial AI-powered programming assistants, to investigate
the impact of code format [16]. The task requires the LLM to com-
plete the code snippets with missing middle sections, which can
assess the model’s code understanding and generation capability
at the same time. Given the significant costs associated with using
commercial LLM APIs, our experiment includes four programming
languages: Java, Python, C++, and C#, which feature diverse for-
matting conventions and are among the most popular languages
in production environments. Catering to these needs, we select
McEval[4] as the benchmark for our study. It is created by profes-
sional developers through a rigorous annotation and verification
process, covering 40 programming languages. By having experi-
enced developers manually create and validate each sample, the
dataset is independently generated rather than being automatically
translated from Python, which enhances diversity and authenticity
while minimizing the risk of data leakage from training sets. In this
benchmark, each sample consists of a code snippet with a missing
middle section for the FIM task, a detailed problem description that
explains the coding challenge, and a set of corresponding test cases
to evaluate the correctness of the generated code. We use its subset
for the four languages, which offers 314 samples for C++, 318 for
C#, 355 for Java, and 330 for Python.

2.2 Large Language Models
To ensure the generalization of our findings, we evaluate a di-
verse range of state-of-the-art LLMs, including five commercial
API-based models and five open-weight models. Among the com-
mercial models, we include three models from OpenAI: GPT-3.5-
turbo, a widely used efficient model that balances performance
and cost-effectiveness in production applications; GPT-4o-mini,
a mid-sized model that strikes a balance between computational
efficiency and robust capabilities; and GPT-4o, an advanced multi-
modal model representing the state-of-the-art in commercial LLM
performance [14, 30]. Additionally, we evaluate Google’s Gemini,

https://sites.google.com/view/the-hidden-cost-of-readability
https://sites.google.com/view/the-hidden-cost-of-readability

Conference’17, July 2017, Washington, DC, USA Dangfeng Pan, Zhensu Sun, Cenyuan Zhang, David Lo, and Xiaoning Du

Developer

Human-formatted Code

transform

Unformatted Code

LLMPrompt Response

Natural Language

transform

Natural Language

LLM-generated Code Formatted Code

Figure 2: A demonstration of how unformatted code can fit in the existing Human-AI workflow.

specifically using the gemini-1.5-flash version, which is a fast and
versatile multimodal model for scaling across diverse tasks. [11],
and Anthropic’s Claude 3.7 Sonnet, which emphasizes safety and
alignment [1].

On the open-weight front, the five models are Phi (with 3.82B
parameters), a lightweight instruction-tuned model pre-trained on
synthetic data and filteredweb content for reasoning and instruction-
following tasks [12]; Qwen (1.54B parameters), Alibaba’s special-
ized instruction-tunedmodel optimized for code generation and rea-
soning [9]; Magicoder, an instruction-tuned system (6.7B parame-
ters) fine-tuned from Deepseek-coder-6.7B using the OSS-Instruct
method to enhance code generation quality [40]; and two mod-
els from DeepSeek: DeepSeek-V3, a powerful Mixture-of-Experts
model with 671B total parameters (37B activated per token) pre-
trained on 14.8 trillion tokens and fine-tuned via supervised and
reinforcement learning [10], and Deepseek-coder-1.3B, trained
from scratch on 2 trillion tokens with a composition of 87% code
and 13% natural language [21].

2.3 Evaluation Metrics
We evaluate our approach using the following metrics:

• Pass@1: To compute Pass@1, one code sample is generated for
each problem in the benchmark, and a problem is considered
solved if the samples pass the unit tests. We report the fraction
of problems being successfully solved.

• Token Counts:We assess efficiency by counting the tokens in
the input code and the generated output. Notably, since tokens are
processed using each model’s tokenizer, the same text may yield
different token counts across different LLMs. For input token
reduction, we extract the code portion from the prompt and
calculate the difference in token counts between the formatted
and unformatted versions. For output token reduction, directly
comparing outputs generated from formatted and unformatted
inputs is unfair, as differences in input may lead to semantically
different outputs. Instead, we estimate output token reduction by
reformatting the LLM-generated code for unformatted input into
the most concisely formatted version and comparing the token
counts before and after reformatting. This approach quantifies the
potential token savings in the output. Notably, token counts can
be directly translated to the financial cost when using commercial
LLM APIs. For example, GPT-4o charges $2.5 per 1M tokens for
input and $10.00 per 1M tokens for output [29].

• Statistical Validation: We employ McNemar’s test [26], a non-
parametric method particularly suited for comparing the perfor-
mance of two models on the same test instances. This test helps
us determine whether differences in Pass@1 between the experi-
mental and control groups are statistically significant (𝑝-value
< 0.05). Additionally, for analyzing the statistical significance
of differences in input and output token counts between these
experimental and control groups, we utilize the Mann-Whitney U
Test [24]. This non-parametric test is appropriate for comparing
distributions of token counts as it does not assume normality in
the data, allowing us to robustly assess whether the observed
token reductions are statistically significant. To address the mul-
tiple testing problem across different RQs and measurements, we
apply False Discovery Rate (FDR) correction using the Benjamini-
Hochberg procedure [3], which controls the expected proportion
of false positives and strengthens the validity of our statistical
claims.

2.4 Format Processing
We clarify the formatting elements considered in our study and
clearly define formatted code and unformatted code.

• Formatting elements. To identify omittable formatting ele-
ments for evaluation, we analyze the lexer configurations and
grammar rules of each programming language, selecting ele-
ments categorized as non-essential or skippable. After excluding
elements related to comments or other non-code components,
finally three formatting elements are selected for evaluation:
indentation, whitespace, and newlines. In Java, C#, and C++, in-
dentation, newlines, and additional whitespace are formatting
tokens that do not affect the semantic meaning of the code, ex-
cept in the case of preprocessor directives in C# and C++. For
Python, only whitespace is removed as the other two elements
are required by Python syntax.

• Formatted Code (Control Group): To establish uniform con-
trol groups, we standardize the usage of the formatting elements
mentioned above in all code samples according to the Google
Style guidelines [18] for C-family languages (C++, C#, Java) and
PEP 8 [38] for Python. This ensures that our formatting accu-
rately reflects real-world practices. This standardization results
in a slight increase of 1.15% in the token count of the evaluation
datasets. While this may affect the quantitative results of our

The Hidden Cost of Readability: How Code Formatting Silently Consumes Your LLM Budget Conference’17, July 2017, Washington, DC, USA

experiments, it allows for more informed and transparent con-
clusions. We believe that the qualitative findings remain valid
despite these slight changes in formatting rules.

• Unformatted Code (Experimental Group): For all code sam-
ples, we minimize whitespaces, newlines, and indentation with-
out violating the syntax rules of each programming language.
Regarding whitespaces, we eliminate non-essential spaces while
keeping those required by the language’s syntax (e.g., spaces be-
tween keywords and identifiers). For newlines, we remove blank
lines and combine multiple statements onto single lines wherever
syntactically permissible. We preserve necessary newlines, such
as those separating preprocessor directives in C++. As for inden-
tation, we remove all leading spaces or tabs at the beginning of
lines, as long as the syntax allows.

2.5 Implementation Details
In our experiments, we evaluate a diverse range of popular LLMs,
including commercial API-based models and open-weight models.
The commercial API-based models include GPT-3.5-turbo, GPT-4o-
mini, GPT-4o from OpenAI, Gemini from Google, Claude from An-
thropic, and DeepSeek-V3 from Novita (a third-party API provider).
For API invocation, we implement standardized REST requests to
each provider’s endpoints using their official SDKs with default
parameters. Additionally, we evaluate open-weight models locally,
including Phi, Qwen, Deepseek-coder, and Magicoder. The local
models are implemented using the Huggingface Transformers li-
brary with PyTorch and executed on hardware equipped with 40
vCPUs, 480GB RAM, and an NVIDIA GeForce RTX 3090 GPU (24GB
VRAM). For these local models, the maximum token limit is set to
2048 due to GPU memory constraints. During inference, we use
default hyper-parameters for all models, setting the temperature
to 0 to ensure deterministic outputs. For fine-tuning experiments,
we employed two distinct approaches. For parameter-efficient fine-
tuning (PEFT), we randomly sampled 5000 examples for each pro-
gramming language from the code-instruct-700k [34] dataset to
train smaller models. For API-based fine-tuning, we selected a slim-
mer dataset of 50 examples from the McEval benchmark for each
language to fine-tune commercial models, balancing cost consider-
ations with effective adaptation.

3 STUDY RESULTS
In this section, we report our experimental results and answer the
three research questions.

3.1 RQ1: Impact of Unformatted Code on LLM
Performance and Efficiency

In this RQ, we systematically evaluate the impact of removing
formatting elements from the prompts of FIM tasks. In addition to
LLM performance, we also examine the LLMs’ adherence to the
formatting style of the prompts. The ability to maintain a consistent
coding style during generation could further enhance LLMs’ token
efficiency.

To systematically evaluate the impact of code formatting on
LLM performance and token efficiency, we evaluate all ten models
using the McEval benchmark of the four programming languages.
We prompt the models with two versions of the incomplete code

snippet, namely, the formatted version and the unformatted version.
We calculate Pass@1 using test cases and measure token counts for
both the incomplete code and the generated completions, following
the methodology outlined in Section 2.3. Additionally, we assess
the statistical significance between the Pass@1 scores and token
counts of the experimental group (using unformatted code) and the
control group (using formatted code).

The results are presented in Table 1. We bold case where the
performance on unformatted input code is either equal to or only
marginally lower (within a 2% margin) than the performance on
formatted code.

3.1.1 Impacts on LLM performance. Most models exhibit stable
performance across formatted and unformatted code inputs, with
only minor fluctuations observed in certain languages. Specifically,
across all models and languages, we do not observe a Pass@1
drop higher than 4.2% after removing the code format in the input,
and all those drops exhibit insignificant 𝑝-values. State-of-the-art
(SOTA) models, such as Deepseek-V3, Gemini, and GPT-4o, demon-
strate negligible differences in Pass@1 scores between formatted
and unformatted code, indicating that removing formatting has
no significant impact on their performance. Smaller or less per-
formant models exhibit more pronounced fluctuations. For exam-
ple, Deepseek-Coder shows performance degradation in C++ (3.2%
drop in Pass@1) and C# (2.9% drop), while Phi struggles with C++
(4.2% drop). This may be caused by the inherent limitations of
smaller models in generalizing across diverse input structures. In
contrast, SOTA models, with their larger parameter counts and
more advanced training methodologies, are better equipped to han-
dle unformatted inputs. Interestingly, we also observe cases where
performance improves after removing the format, some of which
are even statistically significant. For instance, in Python, GPT-4o’s
performance increases from 66.4% to 71.5% when transitioning
from formatted to unformatted code. We infer that the removal of
formatting elements simplifies the input in certain cases, reduc-
ing distractions from non-essential tokens and allowing models
to focus on the core logic. Investigating the reasons behind this
phenomenon could be an interesting direction for future work.

Takeaway#1: The code format in the input does not nega-
tively impact the performance of LLMs, as they demonstrate
comparable Pass@1 scores across both formatted and unfor-
matted inputs.

Among the evaluated languages, Java stands out as the most
stable in terms of model performance when transitioning from for-
matted to unformatted code inputs. This stability is evident across
all models, with no significant performance drops observed even
for smaller or less performant models. This exceptional stability
can likely be attributed to the prevalence of unformatted Java code
in their pre-training datasets. Java is one of the most widely used
programming languages, and its code is frequently shared in diverse
formats in open-source repositories, forums, and documentation.
As a result, models are likely exposed to a significant amount of
unformatted or minimally formatted Java code during training,
enabling them to better generalize such inputs. In contrast, other

Conference’17, July 2017, Washington, DC, USA Dangfeng Pan, Zhensu Sun, Cenyuan Zhang, David Lo, and Xiaoning Du

Table 1: Comparison of model performance (Pass@1) and token efficiency between formatted code (F) and unformatted code (U).
Models include DeepSeek-V3 (DS-V3), Claude, Gemini, MagicCoder (MC), GPT-4o, GPT-4o-mini (GPT-4o-m), DeepSeek-Coder
(DS-C), Qwen, GPT-3.5, and Phi.

Language Metric DS-V3 Claude Gemini MC GPT-4o GPT-4o-m DS-C Qwen GPT-3.5 Phi

C++

Pass@1 (F) 76.1% 72.9% 68.5% 65.9% 63.7% 62.4% 49.0% 39.2%∗ 31.5%∗ 16.9%
Pass@1 (U) 76.8% 72.9% 67.2% 64.3% 61.8% 62.4% 46.8% 46.8%∗ 38.2%∗ 12.7%
Input Reduction 30.8%∗∗ 28.9%∗∗ 34.0%∗∗ 24.8%∗∗ 33.7%∗∗ 33.7%∗∗ 24.8%∗∗ 34.4%∗∗ 35.1%∗∗ 31.0%∗∗

Output Reduction 0.0% -0.7% 9.3% 2.9% 0.4% 0.7% 2.6% 1.9% 2.8% 1.3%

C#

Pass@1 (F) 87.7% 90.3% 77.4% 73.6% 76.7% 78.3% 51.6% 45.6% 47.8% 15.4%
Pass@1 (U) 86.8% 87.7% 76.4% 73.6% 77.7% 77.7% 48.7% 49.1% 50.6% 15.7%
Input Reduction 22.3%∗∗ 22.7%∗∗ 29.7%∗∗ 22.7%∗∗ 26.2%∗∗ 26.2%∗∗ 22.7%∗∗ 26.8%∗∗ 27.1%∗∗ 26.2%∗∗

Output Reduction -0.5% -2.3% 2.8% 0.7% -0.5% -0.4% 0.7% 1.2% 0.5% 0.4%

Java

Pass@1 (F) 70.7% 68.5% 67.9% 63.7% 63.1% 65.1% 56.1% 47.9% 36.9%∗ 15.8%
Pass@1 (U) 71.3% 69.0% 67.9% 63.7% 65.6% 66.5% 58.9% 51.3% 43.4%∗ 17.7%
Input Reduction 29.9%∗∗ 35.7%∗∗ 42.0%∗∗ 33.1%∗∗ 33.9%∗∗ 33.9%∗∗ 33.1%∗∗ 35.0%∗∗ 35.1%∗∗ 37.2%∗∗

Output Reduction 3.7% 5.0% 11.5% 6.8% 4.6% 4.1% 7.2% 7.3% 4.6% 6.2%

Python

Pass@1 (F) 81.8% 84.5% 71.2% 44.2% 66.4%∗ 52.1% 50.9% 66.7% 73.6% 20.9%
Pass@1 (U) 85.2% 87.0% 71.8% 44.8% 71.5%∗ 51.8% 49.7% 63.9% 70.3% 20.3%
Input Reduction 7.4% 4.7% 5.6% 2.2% 9.4% 9.4% 2.2% 9.5% 9.5% 5.2%
Output Reduction 0.0% -1.1% 4.1% 1.9% 0.4% 0.5% 1.4% 4.3% 2.3% 0.1%

𝐵𝑜𝑙𝑑 : Unformatted code performance is either better than or within 2% of formatted code. ∗ : 𝑝-value < 0.05 ∗∗ : 𝑝-value < 0.01

languages exhibit greater sensitivity to format changes. For exam-
ple, both Qwen and GPT-3.5 show noticeable performance drops
in Python (2.8% and 3.3% decrease in Pass@1, respectively), high-
lighting the influence of language-specific syntax and training data
distribution on model performance.

Takeaway#2: Models exhibit language-specific sensitivity
to code formatting changes, where Java demonstrates excep-
tional stability across formatted and unformatted inputs.

3.1.2 Impacts on Token Reduction. Using unformatted code as in-
put can reduce a considerable number of tokens across all evaluated
models, where the extent of this reduction varies due to differences
in tokenizers. On average, the input code tokens are reduced by
25.8% across all settings. For Deepseek-V3, the input code token
reduction is particularly notable, with Java code tokens reduced
by 42.0%, highlighting the potential of format removal in accelerat-
ing the models’ code understanding speed. Similarly, commercial
LLMs like Claude, Gemini, and GPT-4o also demonstrate substantial
input token reduction, with averages of 23.0%, 27.8%, and 25.8%,
respectively. For these commercial models, these reductions directly
translate to cost savings in their API services. Take Claude 3.7 Son-
net for example. It charges $3 per 1M input tokens, where a 23.0%
token reduction can save $0.69 per 1M tokens [2]. This cost effi-
ciency makes format removal an attractive option for users of these
models. Moreover, the efficiency gains vary substantially depending
on the programming language. Java shows the highest efficiency
gains, averaging 34.9% token reduction, due to its verbose syntax
and reliance on formatting for readability. The efficiency gains are
also substantial for C++ and C#, respectively 31.12% and 25.26%. In
contrast, Python achieves only a 6.51% average code token reduc-
tion, as formatting elements such as newlines and indentations are

integral to its grammar and cannot be removed without compro-
mising code functionality. This language-specific variability must
be carefully considered when deciding whether to use unformatted
code for specific LLM-driven applications.

Takeaway#3: Removing code formatting can substantially
reduce input tokens for languages that do not deeply integrate
formatting elements into their syntax (e.g., Java, C++, C#) and
only slightly reduce tokens for languages like Python, where
formatting is essential to syntax and functionality.

While input token reduction is substantial, output token reduc-
tion remains modest, depending on the language or models. Specif-
ically, output code token reduction averages 2.5% across all models
and languages, with the highest reduction being 11.5%, achieved
by Gemini in Java. This suggests that models have internalized
formatting conventions and maintain them in outputs regardless
of input formatting. It underscores the need for further optimiza-
tion in output generation to fully capitalize on the efficiency gains
achieved through input token reduction. We also observe some in-
stances showing negative reduction. Upon examining the generated
code, we find that this is because the code generated by the models
sometimes misaligns with the style guideline we use. As a result,
when we convert the generated code into the style guideline format,
additional tokens are introduced, leading to negative reductions in
some cases. LLM may produce a shorter response if the generated
code is of low quality.

Takeaway#4: LLMs tend to maintain formatting conventions
in their outputs, regardless of input formatting.

The Hidden Cost of Readability: How Code Formatting Silently Consumes Your LLM Budget Conference’17, July 2017, Washington, DC, USA

3.2 RQ2: Contribution of Individual Formatting
Elements

While the removal of overall formatting had minimal performance
impact, the mixed results—ranging from performance drops to im-
provements—prompted us to figure out the impact of each individ-
ual formatting element. To this end, we conduct an ablation study
on the three top-performing commercial LLMs (Claude, Gemini, and
GPT-4o) from our prior experiments. The ablation study involves
removing one type of formatting element at a time—indentation,
whitespaces, or newlines—and observing the resulting performance
of the LLMs. This study focuses on C++, Java, and C#, excluding
Python, as its syntax only allows for whitespace removal, leaving
no room for ablation. Specifically, for each sample in the bench-
mark, we generate three ablated versions: Whitespaces Removed,
Indentations Removed, and Newlines Removed. Similar to the ex-
periments in RQ1, we feed these versions to the LLMs and compute
the Pass@1 and token reductions for both inputs and outputs. Addi-
tionally, we assess the statistical significance between the Pass@1
scores and token counts of the experimental group (one formatting
element removed) and the control group (all formatting elements
removed). The results are presented in Table 2.

3.2.1 Impacts on LLM performance. Across the three commercial
LLMs evaluated, we observe that the impact of removing individ-
ual formatting elements differs across models. Claude and GPT-4o
demonstrate remarkable stability in performance when individual
formatting elements are removed, where all 𝑝-values are all higher
than 0.05, indicating no significant differences. Specifically, across
all languages, Claude’s performance varies by less than 1% when
whitespaces or indentations are removed and even improves by an
average of 1.3% when only newlines are removed. Similarly, GPT-4o
exhibits minimal performance fluctuations, with an average varia-
tion of 0.8% across all removal strategies, highlighting its robustness
to formatting changes. However, Gemini shows greater sensitiv-
ity to formatting removal on a single type of formatting element,
with some settings, such as whitespaces removed C# and newlines
removed Java, showing statistically significant Pass@1 drops com-
pared to removing all elements. Compared to fully unformatted
code, its average Pass@1 across all three languages declines 4.0%
with whitespace removal, 3.1% with indentation removal, and 2.9%
with newline removal. This indicates that Gemini is more sensitive
to the removal of individual formatting elements, particularly in C#
and Java. These findings indicate that our prior observations—that
code formatting does not negatively impact LLM performance—do
not extend to the removal of individual formatting elements. We
hypothesize that partially unformatted code is less common in train-
ing datasets, making it more challenging for some LLMs to process
effectively. Interestingly, certain selective removal strategies yield
better performance than both fully formatted and unformatted
code for Claude and GPT-4o. For instance, when only newlines
are removed in C++, Claude’s Pass@1 increases 1.6% compared to
the version with all elements removed. These results indicate that
these LLMs may have specific preferences for certain formatting
elements, which could be an interesting area for future research.

Takeaway#5: In terms of individual formatting elements,
removing such an element may introduce a negative impact,
as Gemini exhibits a significant performance degradation.

3.2.2 Impacts on Token Reduction. Our analysis reveals that differ-
ent formatting elements contribute unequally to token consump-
tion, with significant variations across both languages and models.
For input code tokens, newlines contribute most significantly to
token count for Claude and Gemini, accounting for an average of
14.6% for Claude and 17.5% for Gemini across languages. For GPT-
4o, however, whitespaces have a higher impact with an average
of 10.7% compared to newlines at 7.5%. Indentations represent the
second largest contributor with an average of 7.9% for Claude, 8.9%
for Gemini, and 9.6% for GPT-4o across all languages. Such differ-
ences are caused by the different tokenizers of each LLM. The input
efficiency gains also vary by programming language. For instance,
newline removal alone reduces Java tokens by 18.7% for Claude and
22.0% for Gemini. C++ follows with an average reduction of 9.2%
across selective strategies, while C# shows 7.9%. Similar to Take-
away #3, output token reduction remains minimal across all models
and formatting strategies. On average, output tokens decrease by
only 0.4% for Claude, 3.8% for Gemini, and 1.3% for GPT-4o when
individual formatting elements are removed.

Takeaway#6: Removing individual elements can also reduce
input tokens by a considerable amount, but they still suffer
from the same issue in output token efficiency as completely
unformatted code.

3.3 RQ3: Methods for Token-Efficient
Generation

As demonstrated in RQ1 and RQ2, even when the input code is
unformatted, LLMs tend to generate formatted code in their out-
puts, resulting in insufficient code reduction. To explore whether
and how this issue can be mitigated, we experiment with two tech-
niques: prompt engineering and fine-tuning. The experiments were
performed on two SOTA commercial LLMs, GPT-4 and Gemini,
because they are the only commercial models, to the best of our
knowledge, offering APIs for fine-tuning. In the following, we detail
the experimental setup for eachmethod and present their respective
results.

3.3.1 Prompting with instructions to generate unformatted code.
Since LLMs can interpret user instructions in prompts, a natural ap-
proach is to explicitly request unformatted code outputs. To explore
this direction, we design two distinct instructions: one concise (P1:
“Output code without formatting, maintaining syntax.”) and one
detailed and explicit (P2: “Please directly output the following code,
deleting all spacings, newlines, and indentations, provided that it
does not violate any syntax rules:”). Each instruction is appended to
the existing FIM task prompts. Using this revised setup, we evaluate
the LLM-generated code completions against unformatted bench-
mark code in three languages, C++, C#, and Java, measuring pass@1
performance and quantifying reductions in input and output token
counts. We also compute the statistical significance between the

Conference’17, July 2017, Washington, DC, USA Dangfeng Pan, Zhensu Sun, Cenyuan Zhang, David Lo, and Xiaoning Du

Table 2: The Pass@1 and token reduction of three LLMs with various formatting configurations.

Model Format

Pass@1 Token Reduction

C++ C# Java
C++ C# Java

Input Output Input Output Input Output

Claude

Whitespaces Removed 72.3% 87.7% 69.0% 5.2% 0.4% 3.2% -2.4% 3.3% 4.3%
Indentations Removed 72.2% 88.7% 68.2% 6.7% -1.4% 6.4% -1.6% 10.5% 4.4%
Newlines Removed 74.5% 89.0% 69.0% 13.4%∗ -2.6% 11.7%∗ -1.4% 18.7%∗∗ 4.3%
All Removed 72.9% 87.7% 69.0% 28.9% -0.7% 22.7% -2.3% 35.7% 5.07%

Gemini

Whitespaces Removed 64.6% 71.3%∗ 63.7%∗ 6.3% 5.4% 3.4% 2.2% 3.4% 6.0%
Indentations Removed 66.6% 71.1%∗ 65.1% 7.3% 2.5% 7.5% 0.5% 11.8% 6.8%
Newlines Removed 66.9% 73.9% 62.8%∗∗ 15.4%∗∗ 1.9% 15.0%∗ 0.7% 22.0%∗∗ 7.8%
All Removed 67.2% 76.4% 67.9% 34.0% 9.3% 29.7% 2.8% 42.0% 11.5%

GPT-4o

Whitespaces Removed 63.7% 79.5% 63.3% 14.2% 1.1% 8.4% -0.2% 9.4% 4.0%
Indentations Removed 63.7% 78.6% 63.3% 8.2% 0.1% 8.1% -0.4% 12.5% 3.7%
Newlines Removed 62.4% 79.2% 65.4% 7.9% 0.1% 6.1% -0.8% 8.4% 3.8%
All Removed 61.8% 77.7% 65.5% 33.7% 0.4% 26.2% -0.5% 33.9% 4.6%

∗ : 𝑝-value < 0.05 ∗∗ : 𝑝-value < 0.01

Table 3: Comparison of Pass@1 and token reduction across three settings: unformatted input code with the original instruction
(Origin) and two experimental prompts (P1 and P2).

Model Language Pass@1 Input Reduction Output Reduction

Origin Prompt(P1) Prompt(P2) Origin Prompt(P1) Prompt(P2)

Gemini

C++ 67.2% 47.4%∗∗ 11.1%∗∗ 34.0%∗∗ 9.3% 25.4%∗∗ 29.2%∗∗

C# 76.4% 48.7%∗∗ 4.4%∗∗ 29.7%∗∗ 2.8% 21.0%∗∗ 25.1%∗∗

Java 67.9% 34.6%∗∗ 14.6%∗∗ 42.0%∗∗ 11.5% 37.2%∗∗ 38.9%∗∗

Python 71.8% 68.1% 10.9%∗∗ 5.6% 4.1% 5.5% 9.9%

GPT-4o

C++ 61.8% 69.7%∗∗ 65.9% 33.7%∗∗ 0.4% 1.2% 32.6%∗∗

C# 77.7% 85.8%∗∗ 82.7%∗ 26.2%∗∗ 0.5% 0.1% 25.6%∗∗

Java 65.6% 68.5%∗ 66.5% 33.9%∗∗ 4.6% 5.4% 36.1%∗∗

Python 71.5% 80.9%∗∗ 59.7%∗∗ 9.4% 0.4% 0.4% 14.4%∗∗
∗ : 𝑝-value < 0.05 ∗∗ : 𝑝-value < 0.01

pass@1 scores of the experimental group (using the revised prompt)
and the control group (using the original prompt).

As shown in Table 3, prompting can be effective in addressing
the insufficient output code token reduction. GPT-4o, instructed
with P2, is observed to successfully achieve substantial output to-
ken reduction while maintaining its performance in Java, C++,
and C#. Specifically, it reduces output code tokens by an aver-
age of 27.2% when processing unformatted code inputs with P2,
which is comparable to its input reduction percentage. Meanwhile,
its performance on these three languages is maintained or even
significantly improved. It demonstrates the feasibility of using
prompts for more output token reduction. However, in other set-
tings, the LLMs cannot work well. For example, the concise prompt
P1 is misunderstood by GPT-4o, resulting in output reductions
similar to the original prompt, with the highest reduction being
only 5.4% across all languages. Gemini experiences severe per-
formance degradation under both P1 and P2, despite achieving
satisfying output token reductions. Upon closer inspection, we

find that Gemini tends to remove elements in a way that vio-
lates syntax rules. For example, when given a C# method decla-
ration like static bool HasCloseElements(List<double> numbers,

double threshold), Gemini generates staticboolHasCloseElements
(List<double>numbers,doublethreshold) where it incorrectly re-
moves the spaces between keywords and types. This creates syntax
errors as neither staticbool nor doublethreshold are valid con-
structs in C#. These failure cases highlight the importance of clear
instructions for LLMs.

Takeaway#7: Prompting LLMs with well-crafted prompts
to request unformatted output code can effectively reduce
output code tokens while maintaining model’s performance.

Notably, appending these instructions as new prompts intro-
duced an overhead in input token count. Specifically, P1 and P2
added 8 and 28 tokens, respectively, to the input prompt, as mea-
sured by GPT-4o’s tokenizer. This creates a break-even point where

The Hidden Cost of Readability: How Code Formatting Silently Consumes Your LLM Budget Conference’17, July 2017, Washington, DC, USA

Table 4: Comparison between models fine-tuned on format-
ted code (F) and unformatted code (U).

Model Reduction Pass@1

Input Output Finetuned(F) Finetuned(U)

Gemini 44.2%∗∗ 35.9%∗∗ 64.1% 63.7%
GPT-4o 36.5%∗∗ 24.8%∗∗ 64.8% 67.4%

∗ : 𝑝-value < 0.05 ∗∗ : 𝑝-value < 0.01

the method becomes beneficial only when the expected output
token reduction exceeds this initial cost. However, the length of
the prompt not only affects overhead but also determines the space
available for clearly describing instructions, presenting an efficiency-
performance trade-off. For example, the short prompt P1, despite
having less overhead, was misunderstood by GPT-4o due to its
insufficient information.

Takeaway#8: Prompt design should balance the trade-off
between the overhead from prompt length and the clarity of
instructions.

3.3.2 Finetuning with unformatted samples. Fine-tuning is a widely
used technique for adjusting model behavior. In this experiment,
we fine-tune the two LLMs, GPT-4o and Gemini, using unformatted
code samples. We also include a control group for measuring the
impact of fine-tuning on model performance, i.e., the same model
fine-tuned with formatted code samples in the same fine-tuning
environment. Due to budget constraints, the fine-tuning is limited to
Java. Specifically, from the McEval benchmark, we randomly select
50 Java samples as the training dataset and retain the remaining 305
samples as the test set. The training dataset is processed into two
versions: formatted and unformatted. For each model, we train two
variants, each using one version of the dataset. The training employs
a parameter-efficient fine-tuning method, QLoRA [7]. We evaluate
each fine-tuned model on the retained test set and compare their
performance in Pass@1 and token reductions. We also compute
the statistical significance between the pass@1 scores and token
counts of the experimental group (fine-tuned with unformatted
code samples) and the control group (fine-tuned with formatted
code samples).

The results are reported in Table 4. Similar to prompt engineer-
ing, fine-tuning can also significantly increase the output token
reduction. Specifically, Gemini achieves a substantial 35.9% reduc-
tion in output tokens with only a minimal performance impact
and a 0.4% insignificant difference in Pass@1, while GPT-4o re-
duces output tokens by 24.8% and even shows a slight performance
improvement (2.6%) when trained on unformatted code.

Takeaway#9: Fine-tuning with unformatted code can suc-
cessfully reduce output tokens while maintaining or even
improving Pass@1, offering a practical optimization strategy.

3.3.3 Prompting or Finetuning? In RQ3, we experiment with two
approaches, prompt engineering and fine-tuning, to reduce more
tokens in the output. The results demonstrate that both methods

are viable for achieving this objective. Each approach has distinct
strengths and limitations, which we discuss in detail below.

Prompt engineering guides the LLM in minimizing unnecessary
formatting tokens by providing explicit natural language instruc-
tions. This method modifies only the input text without altering
the underlying model, making it highly flexible and cost-effective,
as it incurs no additional training expenses. However, our experi-
ments reveal that the effectiveness of prompt engineering depends
heavily on the quality of the prompt and the model’s capabilities.
Additionally, the prompt itself introduces token overhead, which
can limit its practicality during prompt design.

In contrast, fine-tuning the model using unformatted code sam-
ples can also optimize token efficiency effectively. Our experiments
show that lightweight fine-tuning with just 50 training samples,
combined with PEFT techniques, achieves comparable token reduc-
tion. This approach avoids the overhead associated with prompting.
However, fine-tuning requires access to the model, which may not
be feasible for individual users of LLM services. Furthermore, fine-
tuned models tend to exhibit fixed behavioral patterns based on the
training data, reducing their adaptability to diverse needs.

In conclusion, the choice between prompt engineering and fine-
tuning depends on the LLM’s usage scenario and the user’s role.
For users seeking quick, flexible solutions without model access or
additional training resources, prompt engineering offers a practical
and cost-effective option. On the other hand, fine-tuning provides
a more robust and consistent solution for token reduction, particu-
larly for users with the resources and access to modify the model,
as well as for domain-specific tasks like code completion.

Takeaway#10: The choice between prompt engineering and
fine-tuning depends on the user’s needs and resources. Prompt
engineering is a flexible, cost-effective solution for users with-
out model access, while fine-tuning offers a more robust and
consistent approach for those with the resources to modify
the model, particularly in stable tasks like code completion.

4 TOOL
Based on the promising results from our experiments, we developed
a code transformation tool designed to either remove or restore
formatting in source code. This tool can convert source code into a
compact, unformatted version optimized for efficient model com-
prehension, as well as revert it back to a human-readable format.

4.1 Implementation
We implemented a transformation tool supporting C++, Java, C#,
and Python. It is implemented to serve as the additional pre-processing
and post-processing step to minimize the token consumption from
the code fromat. The tool leverages language-specific formatters: for
C-family languages (C++, Java, C#), we extended Uncrustify [5],
a widely-used formatter. For Python, we implement a custom for-
matter built on YAPF [19], which accurately handles Python’s
indentation-based syntax. Currently, the tool supports the removal
and restoration of three formatting elements: indentation, whites-
paces, and newlines. It can be configured to remove some or all
formatting elements to the greatest extent possible without violat-
ing syntax rules.

Conference’17, July 2017, Washington, DC, USA Dangfeng Pan, Zhensu Sun, Cenyuan Zhang, David Lo, and Xiaoning Du

To handle partial code, which is often syntactically incorrect
but common in code completions or user prompts, we developed a
hybrid solution. The tool first separates the last unfinished block of
code from the main code body and applies different strategies to
remove or restore formatting in the split unfinished block and the
remaining code. For the remaining code, we implemented a syn-
tax repair component that uses a bracket-matching mechanism to
identify and fix unbalanced brackets. This ensures the code is syn-
tactically correct and can be processed accurately by our internal
formatters. After processing, the added brackets used for formatting
are removed. For the unfinished block, predefined regular expres-
sions are applied to identify positions where formatting elements
can be added or removed. Finally, the two blocks are concatenated
back into a single unit.

4.2 Usage Scenarios
Our tool facilitates bidirectional transformation between human-
readable, well-formatted code and LLM-friendly, compact code. As
demonstrated in Figure 2, our tool can be used to build a dual-
conversion inference workflow, enabling LLMs to benefit from the
efficient compact code while still allowing human developers to
work with familiar code. In this workflow, our tool removes the
formatting elements in the input code, reducing token consumption
for LLMs to understand. For the output, it restores the formatting in
LLM-generated code to improve human readability without altering
the underlying logic.

It can be used by both LLM service providers and their users.
Providers such as OpenAI and Claude can leverage this tool to
reduce computational overhead on their servers, leading to faster
response times, lower resource utilization, and enhanced service ef-
ficiency and scalability. Furthermore, developers and organizations
utilizing LLMs can integrate our tool as an additional pre-processing
and post-processing step to minimize unnecessary token consump-
tion. It can reduce their financial costs since most LLM APIs are
charged based on token usage.

4.3 Performance Testing
We test our tool using the samples from the McEval dataset. Specif-
ically, we compare the AST of each code sample before and after
the transformation and achieve 100% AST equivalence across all
test cases, confirming that our transformations preserve semantic
correctness while only modifying formatting elements. We chose
AST equivalence over text comparison since it guarantees program
behavior equivalence, whereas textual comparison might be overly
sensitive to non-functional formatting differences. During the test,
our tool achieves an average transformation speed of 76ms per code
sample, which is a negligible overhead. Such efficiency is crucial for
real-time applications, like IDE plugins or API middleware, where
transformation latency could otherwise impact user experience.

5 RELATEDWORK
5.1 Program Simplification
Prior work on optimizing code representation for LLMs has ex-
plored various approaches. One common strategy involves training
a specialized Byte-Pair Encoding tokenizer[35] on a code corpus,
which can reduce token count compared to tokenizers trained on

natural language corpora[39]. However, this approach still suffers
from unnecessary formatting tokens, and once a model is trained,
its tokenization strategy remains fixed, limiting adaptability. Some
program simplification methods remove parts of input code based
on auxiliary models[33, 37] or attention weights[42]. These meth-
ods inevitably compromise the semantic integrity of the code and
are irreversible, restricting their applicability to code understanding
tasks. Simpy[36] introduces the concept of AI-oriented grammar
for compact code representation. While achieving substantial to-
ken reduction, this method modifies the syntax of the original
programming language, requiring a specialized parser and model
retraining to work with the new grammar. In this work, we propose
a plug-and-play method for optimizing LLM token usage in code
while preserving complete program semantics. Through empirical
experiments, we reveal that SOTA models show resilience to the
removal of formatting tokens. Building on this insight, we develop a
code transformation tool that enables seamless conversion between
human-readable and token-efficient representations, allowing LLMs
to benefit from the token efficiency of unformatted code.

5.2 Coding Style with LLM
Coding style has been extensively studied in the field of software
engineering. Oman et al.[28] established taxonomies that influ-
enced code development guidelines and formatting tools. Building
on these foundations, machine-learning based tools such as CODE-
BUFF [31] and STYLE-ANALYZER [25] have been developed to
enforce consistent code formatting. Mi et al.[27] measured style in-
consistencies within software project teams using clustering meth-
ods, while Wang et al. [15] examined style inconsistencies between
LLM-generated code and human-written code. These researches fo-
cused on improving the style consistency of code. Beyond this, Hu et
al.[23] investigated the impact of poor readability on LLMs, demon-
strating that obfuscation techniques, such as modifying identifier
names and injecting dead branches, can degrademodel performance.
However, their work did not explore the role of formatting elements.
Unlike previous research, our work offers a unique perspective by
quantifying the impact of formatting elements on computational
cost and model performance across multiple languages and archi-
tectures. In addition, we analyze the contribution of individual
formatting components, offering a deeper understanding of their
influence on LLM processing.

6 THREATS TO VALIDITY
6.1 Generalization
Due to budget and hardware limitations, our experiments were
restricted to four programming languages and focused solely on
the Fill-in-the-Middle (FIM) task. As a result, our findings may not
generalize to languages with distinct formatting styles or other LLM
application scenarios. However, the selected languages are widely
adopted in practice, and the FIM task is a common benchmark
for nearly all coding assistants in IDEs. These choices provide a
reasonable foundation for evaluating the model’s performance in
real-world settings, where enhancing token efficiency can lead to
significant resource savings and is often a high priority.

The Hidden Cost of Readability: How Code Formatting Silently Consumes Your LLM Budget Conference’17, July 2017, Washington, DC, USA

6.2 Non-transparent Commercial LLMs
Our experiments involved invoking and fine-tuning commercial
LLMs, such as GPT-4 and Gemini, through their closed-source APIs.
This reliance on proprietary systems introduces potential limita-
tions, as the internal mechanisms, training data, and fine-tuning
strategies of these models are not transparent. Consequently, repro-
ducibility and detailed analysis of their behavior are challenging,
which may affect the generalizability of our findings. Future work
could explore open-source alternatives or collaborate with API
providers to gain deeper insights.

7 CONCLUSION AND FUTUREWORK
This paper exposes the hidden costs of code readability in LLM
processing, demonstrating that formatting elements consume ap-
proximately 24.5% tokens across languageswhile providingminimal
benefits for advanced models. Our analysis identifies the contribu-
tions of three kinds of formatting elements, whitespace, indentation,
and newlines, and shows that both fine-tuning and prompting on
unformatted code can further reduce token usage without compro-
mising quality. These findings challenge conventional views of code
formatting as purely human-oriented and reveal opportunities for
substantial efficiency improvements in LLM-powered development
workflows. Our bidirectional transformation tool offers a practical
solution for balancing human readability with computational effi-
ciency. In the future, we will investigate how formatting impacts
more complex reasoning tasks beyond code completion.

REFERENCES
[1] Anthropic. 2024. Claude 3: Advanced AI Language Model. https://www.

anthropic.com
[2] Anthropic. 2025. Anthropic API Pricing. https://www.anthropic.com/pricing#

anthropic-api
[3] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: a

practical and powerful approach to multiple testing. Journal of the Royal statistical
society: series B (Methodological) 57, 1 (1995), 289–300.

[4] Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin, Ke Jin, Jiaheng Liu, Tao Sun,
Ge Zhang, Changyu Ren, Hongcheng Guo, et al. 2024. McEval: Massively Multi-
lingual Code Evaluation. arXiv e-prints (2024), arXiv–2406.

[5] Uncrustify Contributors. 2025. Uncrustify: Code beautifier. https://github.com/
uncrustify/uncrustify

[6] Christine Cuskley, Rebecca Woods, and Molly Flaherty. 2024. The
Limitations of Large Language Models for Understanding Human
Language and Cognition. Open Mind 8 (08 2024), 1058–1083.
https://doi.org/10.1162/opmi_a_00160 arXiv:https://direct.mit.edu/opmi/article-
pdf/doi/10.1162/opmi_a_00160/2468254/opmi_a_00160.pdf

[7] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023.
QLoRA: Efficient Finetuning of Quantized LLMs. arXiv preprint arXiv:2305.14314
(2023).

[8] Anton Lozhkov et al. 2024. StarCoder 2 and The Stack v2: The Next Generation.
arXiv:2402.19173 [cs.SE] https://arxiv.org/abs/2402.19173

[9] An Yang et al. 2024. Qwen2 Technical Report. arXiv:2407.10671 [cs.CL] https:
//arxiv.org/abs/2407.10671

[10] DeepSeek-AI et al. 2025. DeepSeek-V3 Technical Report. arXiv:2412.19437 [cs.CL]
https://arxiv.org/abs/2412.19437

[11] Gemini Team et al. 2024. Gemini 1.5: Unlocking multimodal understanding across
millions of tokens of context. arXiv:2403.05530 [cs.CL] https://arxiv.org/abs/
2403.05530

[12] Marah Abdin et al. 2024. Phi-3 Technical Report: A Highly Capable Language
Model Locally on Your Phone. arXiv:2404.14219 [cs.CL] https://arxiv.org/abs/
2404.14219

[13] Mohammad Bavarian et al. 2022. Efficient Training of Language Models to Fill in
the Middle. arXiv:2207.14255 [cs.CL] https://arxiv.org/abs/2207.14255

[14] OpenAI et al. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL] https:
//arxiv.org/abs/2303.08774

[15] Yanlin Wang et al. 2024. Beyond Functional Correctness: Investigating Coding
Style Inconsistencies in Large Language Models. arXiv:2407.00456 [cs.SE] https:

//arxiv.org/abs/2407.00456
[16] GitHub. [n. d.]. How GitHub Copilot is getting better at understanding your code.

GitHub Blog (October [n. d.]). https://github.blog/ai-and-ml/github-copilot/how-
github-copilot-is-getting-better-at-understanding-your-code/

[17] Google. 2025. Gemini API Pricing. https://ai.google.dev/gemini-api/docs/pricing
[18] Google. 2025. Google Style Guide. https://google.github.io/styleguide/
[19] Google. 2025. YAPF: A formatter for Python files. https://github.com/google/yapf
[20] Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar,

and Vaishnavh Nagarajan. 2023. Think before you speak: Training language
models with pause tokens. arXiv preprint arXiv:2310.02226 (2023).

[21] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. DeepSeek-Coder: When the Large Language Model Meets
Programming – The Rise of Code Intelligence. arXiv:2401.14196 [cs.SE]
https://arxiv.org/abs/2401.14196

[22] Wenpin Hou and Zhicheng Ji. 2024. Comparing Large Language Models and
Human Programmers for Generating Programming Code. Advanced Science (30
12 2024). https://doi.org/10.1002/advs.202412279 [Online; accessed 2025-03-10].

[23] Chao et al. Hu. 2024. HowEffectively DoCode LanguageModels Understand Poor-
Readability Code?. In Proceedings of the 39th IEEE/ACM International Conference
on Automated Software Engineering (Sacramento, CA, USA) (ASE ’24). Association
for Computing Machinery, New York, NY, USA, 795–806. https://doi.org/10.
1145/3691620.3695072

[24] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether One of Two Random
Variables Is Stochastically Larger than the Other. Annals of Mathematical Statistics
18 (1947), 50–60. https://doi.org/10.1214/aoms/1177730491

[25] Vadim Markovtsev, Waren Long, Hugo Mougard, Konstantin Slavnov, and
Egor Bulychev. 2019. STYLE-ANALYZER: fixing code style inconsistencies
with interpretable unsupervised algorithms. arXiv:1904.00935 [cs.LG] https:
//arxiv.org/abs/1904.00935

[26] Quinn McNemar. 1947. Note on the sampling error of the difference between
correlated proportions or percentages. Psychometrika 12, 2 (June 1947), 153–157.
https://doi.org/10.1007/bf02295996

[27] Qing Mi, Jacky Keung, and Yang Yu. 2016. Measuring the Stylistic Inconsistency
in Software Projects using Hierarchical Agglomerative Clustering. In Proceedings
of the The 12th International Conference on Predictive Models and Data Analytics
in Software Engineering (Ciudad Real, Spain) (PROMISE 2016). Association for
Computing Machinery, New York, NY, USA, Article 5, 10 pages. https://doi.org/
10.1145/2972958.2972963

[28] Paul W. Oman and Curtis R. Cook. 1990. A taxonomy for programming style
(CSC ’90). Association for Computing Machinery, New York, NY, USA, 244–250.
https://doi.org/10.1145/100348.100385

[29] OpenAI. [n. d.]. OpenAI API Pricing. https://openai.com/api/pricing/
[30] Adam Lerer et al. OpenAI, Aaron Hurst. 2024. GPT-4o System Card.

arXiv:2410.21276 [cs.CL] https://arxiv.org/abs/2410.21276
[31] Terence Parr and Jurgen Vinju. 2016. Towards a universal code formatter

through machine learning. In Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Software Language Engineering (Amsterdam, Netherlands)
(SLE 2016). Association for Computing Machinery, New York, NY, USA, 137–151.
https://doi.org/10.1145/2997364.2997383

[32] Mengnan Qi, Yufan Huang, Yongqiang Yao, Maoquan Wang, Bin Gu, and Neel
Sundaresan. 2024. Is Next Token Prediction Sufficient for GPT? Exploration on
Code Logic Comprehension. arXiv:2404.08885 [cs.PL] https://arxiv.org/abs/2404.
08885

[33] Md Rafiqul Islam Rabin, Aftab Hussain, and Mohammad Amin Alipour. 2022.
Syntax-guided program reduction for understanding neural code intelligence
models. In Proceedings of the 6th ACM SIGPLAN International Symposium on
Machine Programming (San Diego, CA, USA) (MAPS 2022). Association for Com-
puting Machinery, New York, NY, USA, 70–79. https://doi.org/10.1145/3520312.
3534869

[34] Safurai. 2024. Code-Instruct-700k Dataset. https://huggingface.co/datasets/
Safurai/Code-Instruct-700k

[35] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. arXiv:1508.07909 [cs.CL] https:
//arxiv.org/abs/1508.07909

[36] Zhensu Sun, Xiaoning Du, Zhou Yang, Li Li, and David Lo. 2024. AI Coders
Are Among Us: Rethinking Programming Language Grammar Towards Efficient
Code Generation. arXiv:2404.16333 [cs.SE] https://arxiv.org/abs/2404.16333

[37] Sahil Suneja, Yunhui Zheng, Yufan Zhuang, Jim A. Laredo, and AlessandroMorari.
2021. Probing model signal-awareness via prediction-preserving input minimiza-
tion. In Proceedings of the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(Athens, Greece) (ESEC/FSE 2021). Association for Computing Machinery, New
York, NY, USA, 945–955. https://doi.org/10.1145/3468264.3468545

[38] van Rossum, Guido and Warsaw, Barry and Coghlan, Nick. 2025. PEP 8 – Style
Guide for Python Code. https://peps.python.org/pep-0008/

https://www.anthropic.com
https://www.anthropic.com
https://www.anthropic.com/pricing#anthropic-api
https://www.anthropic.com/pricing#anthropic-api
https://github.com/uncrustify/uncrustify
https://github.com/uncrustify/uncrustify
https://doi.org/10.1162/opmi_a_00160
https://arxiv.org/abs/https://direct.mit.edu/opmi/article-pdf/doi/10.1162/opmi_a_00160/2468254/opmi_a_00160.pdf
https://arxiv.org/abs/https://direct.mit.edu/opmi/article-pdf/doi/10.1162/opmi_a_00160/2468254/opmi_a_00160.pdf
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2207.14255
https://arxiv.org/abs/2207.14255
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2407.00456
https://arxiv.org/abs/2407.00456
https://arxiv.org/abs/2407.00456
https://github.blog/ai-and-ml/github-copilot/how-github-copilot-is-getting-better-at-understanding-your-code/
https://github.blog/ai-and-ml/github-copilot/how-github-copilot-is-getting-better-at-understanding-your-code/
https://ai.google.dev/gemini-api/docs/pricing
https://google.github.io/styleguide/
https://github.com/google/yapf
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://doi.org/10.1002/advs.202412279
https://doi.org/10.1145/3691620.3695072
https://doi.org/10.1145/3691620.3695072
https://doi.org/10.1214/aoms/1177730491
https://arxiv.org/abs/1904.00935
https://arxiv.org/abs/1904.00935
https://arxiv.org/abs/1904.00935
https://doi.org/10.1007/bf02295996
https://doi.org/10.1145/2972958.2972963
https://doi.org/10.1145/2972958.2972963
https://doi.org/10.1145/100348.100385
https://openai.com/api/pricing/
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://doi.org/10.1145/2997364.2997383
https://arxiv.org/abs/2404.08885
https://arxiv.org/abs/2404.08885
https://arxiv.org/abs/2404.08885
https://doi.org/10.1145/3520312.3534869
https://doi.org/10.1145/3520312.3534869
https://huggingface.co/datasets/Safurai/Code-Instruct-700k
https://huggingface.co/datasets/Safurai/Code-Instruct-700k
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/2404.16333
https://arxiv.org/abs/2404.16333
https://doi.org/10.1145/3468264.3468545
https://peps.python.org/pep-0008/

Conference’17, July 2017, Washington, DC, USA Dangfeng Pan, Zhensu Sun, Cenyuan Zhang, David Lo, and Xiaoning Du

[39] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Un-
derstanding and Generation. In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing, Marie-Francine Moens, Xuanjing
Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.). Association for Compu-
tational Linguistics, Online and Punta Cana, Dominican Republic, 8696–8708.
https://doi.org/10.18653/v1/2021.emnlp-main.685

[40] Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang.
2024. Magicoder: Empowering Code Generation with OSS-Instruct.
arXiv:2312.02120 [cs.CL] https://arxiv.org/abs/2312.02120

[41] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Ling-
ming Zhang. 2022. An extensive study on pre-trained models for program under-
standing and generation. In Proceedings of the 31st ACM SIGSOFT international
symposium on software testing and analysis. 39–51.

[42] Zhaowei Zhang, Hongyu Zhang, Beijun Shen, and Xiaodong Gu. 2022. Diet code
is healthy: simplifying programs for pre-trained models of code. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’22). ACM, 1073–1084.
https://doi.org/10.1145/3540250.3549094

https://doi.org/10.18653/v1/2021.emnlp-main.685
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2312.02120
https://doi.org/10.1145/3540250.3549094

	Abstract
	1 Introduction
	2 Experimental Setting
	2.1 Task and Benchmark
	2.2 Large Language Models
	2.3 Evaluation Metrics
	2.4 Format Processing
	2.5 Implementation Details

	3 Study Results
	3.1 RQ1: Impact of Unformatted Code on LLM Performance and Efficiency
	3.2 RQ2: Contribution of Individual Formatting Elements
	3.3 RQ3: Methods for Token-Efficient Generation

	4 Tool
	4.1 Implementation
	4.2 Usage Scenarios
	4.3 Performance Testing

	5 Related Work
	5.1 Program Simplification
	5.2 Coding Style with LLM

	6 THREATS TO VALIDITY
	6.1 Generalization
	6.2 Non-transparent Commercial LLMs

	7 Conclusion and Future Work
	References

