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Abstract—Large language models (LLMs) have shown excep-
tional performance in code generation and understanding tasks,
yet their high computational costs hinder broader adoption.
One important factor is the inherent verbosity of programming
languages, such as unnecessary formatting elements and lengthy
boilerplate code. This leads to inflated token counts in both
input and generated outputs, which increases inference costs and
slows down the generation process. Prior work improves this
through simplifying programming language grammars, reducing
token usage across both code understanding and generation
tasks. However, it is confined to syntactic transformations, leaving
significant opportunities for token reduction unrealized at the
semantic level.

In this work, we propose Token Sugar, a novel concept that
replaces frequent and verbose code patterns with reversible,
token-efficient shorthand in the source code. To realize this
concept in practice, we designed a systematic solution that mines
high-frequency, token-heavy patterns from a code corpus, maps
each to a unique shorthand, and integrates them into LLM
pretraining via code transformation. With this solution, we obtain
799 (code pattern, shorthand) pairs, which can reduce up to
15.1% token count in the source code and is complementary to
existing syntax-focused methods. We further trained three widely
used LLMs on Token Sugar-augmented data. Experimental
results show that these models not only achieve significant token
savings (up to 11.2% reduction) during generation but also
maintain near-identical Pass@1 scores compared to baselines
trained on unprocessed code.

I. INTRODUCTION

Recent breakthroughs in large language models (LLMs)
have unlocked remarkable capabilities in code-related
tasks [1], such as code generation, summarization, and transla-
tion. LLMs process information on the basis of tokens, where
inputs are tokenized into a token flow and sequentially pro-
cessed to generate output tokens one after another. Naturally,
the token count in both prompts and model outputs has a direct
influence on inference speed and cost. This is also evidenced
by the fact that most commercial LLM APIs charge based
on the volume of tokens in inputs and outputs [2], [3]. As
a result, there is growing interest in techniques that improve
the information representation efficiency of source code, i.e.,
reducing its token counts without compromising semantic
fidelity or degrading the performance and user experience of
LLMs.

Modern programming languages are inherently verbose by
design. This verbosity manifests in two principal forms: (1)
functional verbosity, where necessary constructs require more
tokens than theoretically needed to express the same semantics
(e.g., extensive class definitions in object-oriented program-
ming), and (2) non-functional verbosity, where elements exist
solely for human readability or tooling compatibility without
affecting runtime behavior (e.g., optional semicolons as state-
ment terminators in JavaScript or Python’s line continuation
characters). While such unnecessary verbosity is helpful to
human readability, the additional tokens impose significant
overhead for LLMs, increasing costs and slowing generation.

It motivates researchers to remove or rewrite dispensable
code tokens to reduce the inference or training cost. Existing
studies [4]–[6] center on reducing input length and optimizing
code understanding tasks like code summarization and code
search. Our study focuses on an important yet harder problem:
how to reduce the token usage not only for code under-
standing but also for code generation process? This problem
is fundamentally more challenging because code generation
requires producing compilable, executable, and correct code.
Simply removing some tokens (e.g., those that models pay
less attention to [5]) would break the syntactic and semantic
integrity of the generated code, which is not desired by
developers or code execution environments.

The closest study that tackles this problem is by Sun et
al. [7]; they manually design a set of reversible syntactic
transformations for Python and derive a new grammar called
SimPy. The model trained with SimPy can understand and
generate the compact SimPy code for faster inference, which
is equivalently transformed from/to human-readable Python
source code, allowing human developers to work with. How-
ever, such transformations in SimPy are inherently limited to
syntactic structures, failing to address the large amount of se-
mantic redundancies embedded in identifiers, APIs, or design
patterns. For example, due to its lengthy naming conventions,
a common API invocation like “pandas.DataFrame.to dict()”
still contains considerable tokens regardless of how the syntax
is simplified. To quantify this argument, we analyzed a Github
code corpus, the Python subset of starcoderdata [8] and found
that when tokenized using GPT-4’s tokenizer, only 25.5% of



tokens correspond to Python syntax elements like keywords
and symbols. This reveals a fundamental limitation of purely
syntactic approaches: they leave significant token savings
unrealized beyond the scope of syntax.

To fill this gap, we propose a novel approach, Token Sugar.
It is designed to be bijective transformations: common code
patterns are replaced with compact, token-efficient, equivalent
shorthand. Such shorthand can significantly reduce token
usage during LLM inference and can be deterministically
reverted to the original code. It thus provides LLMs with a
leaner token stream while preserving full semantic fidelity for
downstream compilation or human interpretation. In Figure 1,
we demonstrate how Token Sugar can be used. When a code
generation request is sent to a Token-Sugar-adapted LLM, the
model generates the code using the shorthands of Token Sugar,
consuming only 23 tokens (measured by GPT-4o’s tokenizer).
Specifically, the generated code contains four different short-
hands, each marked by a special token (e.g., ⟨token 1001⟩)
that corresponds to a specific transformation rule. To restore
human readability, a lightweight post-processing step converts
the shorthand back to standard code. The system uses each
special token’s ID as an index to retrieve the corresponding
transformation rule from a pre-maintained hash table. Through
this process, the compact shorthand is expanded into fully
readable code that would have required 40 tokens if generated
directly by a standard LLM.

However, realizing Token Sugar in practice poses several
key challenges: First, which code patterns should be sug-
arized? Not all verbose patterns are equally valuable for
sugarization. Some patterns might be too rare to justify the
overhead of creating a shorthand, while others might already
be relatively concise, leading to minimal benefit from sug-
arization. A scalable, data-driven approach for mining frequent
and token-heavy code patterns is needed. Second, how should
token sugars be represented? The shorthand must minimize
token usage while remaining unambiguous and reversible in
varied code contexts, which is still unexplored in our research
community. Last but not least, can LLMs learn to use token
sugars effectively? Token sugars introduce new abstractions
and vocabulary tokens. LLMs must be trained to recognize,
interpret, and generate these forms without degrading their
core coding capabilities.

In this paper, we present a comprehensive framework for
Token Sugar addressing these challenges. Our approach is
developed for Python as a proof-of-concept, but can be easily
generalized to other programming languages with minor mod-
ifications. At its core, Token Sugar operates by identifying
frequently occurring, verbose code patterns that can be com-
pactly represented by reversible shorthands. These patterns are
not arbitrarily chosen; instead, they are mined from real-world
usage data, e.g., the code generated by an LLM application
in response to its real-world users. Specifically, we employ
frequent subtree mining on generalized abstract syntax trees
(ASTs) derived from such usage data. We then filter these pat-
terns to ensure that they are commonly used during inference,
token-heavy in their current form, and sufficiently existing in

training data. This rigorous selection process guarantees that
our sugarization efforts yield significant token savings for the
LLM. For these chosen patterns, we define a universal compact
shorthand, incorporating specific delimiters and special tokens
to ensure unambiguous reversibility back to the original code.
Finally, we transform the code samples that match these pat-
terns into their corresponding shorthands, creating a sugarized
dataset ideal for pretraining or continual pretraining LLMs.
During this process, we utilize an optimization algorithm to
resolve potential overlaps between different patterns, maxi-
mizing the overall token savings. The model trained with
the sugarized dataset can thus generate or understand code
containing token sugars. Notably, the sugarized code can be
automatically converted back to its original, human-readable
form through rule-based pre/post-processing.

To evaluate the feasibility and effectiveness of Token Sugar,
we conduct a comprehensive evaluation across three different
LLMs, Pythia, Qwen-2.5, and Llama-3.2. We mine 799 token
sugars from a LeetCode Python solution dataset and pre-
train each LLM on a sugarized Python subset of StarCoder-
Data [8], integrating these sugars to enhance function-level
code generation efficiency. The evaluation results show that
Token Sugar achieves significant token reductions of up to
15.1%. Furthermore, it is compatible with existing syntax-
level simplification techniques. When combined with Simpy (a
state-of-the-art method that reduces tokens by 15.3% alone),
the hybrid approach yields over 22% token savings. Notably,
LLMs trained on sugarized data retain near-identical Pass@1
performance compared to baselines (i.e., models trained on
unprocessed data), indicating negligible degradation in gen-
eration quality. Further analysis reveals that stronger mod-
els leverage token sugars more strategically, exhibiting zero
desugarization failures, highlighting their robustness. These
results position Token Sugar as a practical, scalable, and
effective solution for optimizing LLM efficiency.

The source code of the paper is available at https://
anonymous.4open.science/r/token-sugar. Our contribution can
be summarized as follows:
• We propose Token Sugar, a novel concept that replaces

frequent and verbose code patterns with reversible, token-
efficient shorthand in the source code, enabling LLMs to
operate on shorter, more efficient token sequences without
losing fidelity.

• We realize Token Sugar with a practical solution, including
the mining of frequent token-heavy code patterns, the design
of compact and unambiguous shorthand, and an integration
strategy for training LLMs on sugarized data.

• We experimentally demonstrate that Token Sugar can sig-
nificantly reduce token usage and improve code generation
efficiency, with minimal impact on generation quality.

II. TOKEN SUGAR

While grammar-level simplifications can reduce syntactic
redundancy in code [7], they fall short in addressing the
verbosity stemming from semantics, such as lengthy API
names, verbose expressions, and repeated idioms. To close
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SMU Classification: Restricted

“Calculate the sum of digits of a 

number in Python.”

:

num = 12345  
sum_digits<token_1001>
<token_1001>num
sum_digits<token_1003>num

<token_1004>sum_digits

Transform to human-readable

“This appears faster and cost less!”:

: = 0 <token_1001>𝛼ID1001: 𝛼

ID1002: while > 0:  𝛼

<token_1004>ID1004: 𝛼 print( )𝛼

...

Hash table for transformation rules

num = 12345  
sum_digits = 0 
while num > 0:  
  sum_digits += num % 10  
  num = num // 10  
print(sum_digits)

𝛼 𝛽

𝛼 𝛽

+= % 10  

 = // 10  
ID1003:

<token_1003> 𝛼

<token_1002>𝛼 𝛽

Fig. 1: A demonstration of how Token Sugar facilitates LLMs’ code generation process. The LLM equipped with Token Sugar
can generate a compact, sugarized representation of the code using only 23 tokens, compared to the 40 tokens required by a
vanilla LLM for the same logic.

SMU Classification: Restricted

𝑝0 = 0
 for 𝑝1 in range(𝑝2):
 𝑝0 += 𝑝1

sum = 0
 for num in range(8):

sum += num

Code Snippet

Code Pattern

Generalize Instantiate
𝑝0; 𝑝1<token_1001>𝑝2

Transform
Shorthand Snippet

19 tokens

sum;num<token_1001>8

Generalize Instantiate

Shorthand

5 tokens

Reversible

Simplified

Fig. 2: The conceptual relationship between the code pattern
and its shorthand. The code snippet on the left costs 19 tokens
measured by the tokenizer of GPT-4, but only 5 tokens when
sugarized into our shorthand on the right.

this gap, we propose to capture frequently recurring semantic
constructs, regardless of how they are expressed, and represent
them with a token-efficient, reversible shorthand. Since it
makes the code “sweeter” for LLMs to use, we name this
approach Token Sugar. Notably, being reversible, Token Sugar
is compatible with the DualCode [7] inference framework,
which enables human users to interact with human-readable
source code, while LLMs still leverage the efficiency of
simplified code during the inference process.

A. Problem Setup

Token Sugar is a lossless program simplification method,
where it defines bi-objective transformation that common code
patterns are replaced with compact, token-efficient, equivalent

shorthand. To ease the understanding, in the rest of this
paper, we use Token Sugar to denote our proposed method
and token sugars for the transformations. All token sugars
are built upon three components: the code pattern to be
sugarized, the shorthand as the sugarized representation, and
the transformation rule that defines how to convert between
the code pattern and the shorthand. We formalize a token
sugar as a transformation T : C → S, where C is the set
of code instances matching a particular code pattern, and S is
the set of corresponding shorthand strings. The transformation
T must satisfy T−1(T (c)) = c for all c ∈ C, ensuring that the
original code is always recoverable. In Figure 2, we illustrate
the conceptional relationship between code pattern, shorthand,
and their instances. In the following, we introduce them in
detail.

• Code Pattern: A code pattern is a generalized structure that
captures a family of code instances through placeholders.
Specifically, it uses placeholders to abstract over specific
elements like variable names or constant values. When all
the placeholders of a code pattern are filled with specific
values, the code pattern becomes a concrete instance. For
example, an augmented assignment pattern can be written
as “α+ = 1”, which uses “α” as the placeholder to match
any elements appeared in this position. This code pattern
can capture any instance of incrementing a variable by 1,
e.g., x += 1, total += 1, etc. Using patterns instead of
exact code allows the token sugar to be applied to a broader
range of code examples with a single rule.

• Shorthand: The shorthand is also a generalized structure,
being the simplified counterpart of the corresponding code
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pattern. It preserves the original code pattern’s placeholders
but organizes them with a streamlined structure. Notably,
since its objective is token efficiency rather than direct
execution, the structure need not comply with the language’s
grammar as long as it can be unambiguously parsed back
to the original form. For instance, the increment pattern
“α+ = 1” might be rewritten as “α⟨TOKEN⟩”, where
the special token ⟨TOKEN⟩ compactly encodes the “+= 1”
operation, and the placeholder α remains. This allows LLMs
to efficiently recognize and process recurring constructs
while avoiding the verbosity of original patterns.

• Transformation Rule: The transformation rule defines how
to convert between the original code and its shorthand
counterpart. The transformation must be bijective, i.e., each
code matched by a specific code pattern has exactly one
corresponding shorthand variant, and vice versa. During
sugarization, the rule extracts placeholder values from the
original code (based on the pattern) and injects them into
the shorthand’s structure. During desugarization, it does the
reverse, identifying the placeholders in the shorthand and
reconstructing the original code. For the transformation to
work reliably, the shorthand must be unambiguous: it must
be clear where each placeholder starts and ends, even when
embedded in other code content. Notably, the sugarization
and desugarization process is not performed by existing
parsers of the programming language. Instead, it relies on
a converter implemented to capture the target code pattern
or shorthand and perform the replacement based on these
transformation rules.

B. Challenges in Practice

While Token Sugar offers a promising abstraction for reduc-
ing token overhead, realizing it in practice requires overcoming
several key challenges. These challenges span from selecting
the right patterns, to designing usable shorthand formats, to
ensuring that LLMs can effectively understand and generate
sugarized code.
• How should shorthand formats be designed? As a novel

abstraction layer, the design for shorthand formats remains
unexplored. Designing a good shorthand is not just about
compressing; it must also be unambiguous and reversible
while aligning well with the working mechanism of LLMs,
e.g., the token-by-token generation process. The format
should clearly separate placeholder values, avoid conflicts
with surrounding code, and remain interpretable by LLMs.

• Which code patterns should be sugarized? Not all code
patterns are equally valuable for sugarization. Manually
selecting patterns based on experience is neither scalable
nor guaranteed to yield optimal token savings. Instead,
we require a systematic, data-driven approach to identify
frequently used, token-heavy patterns that offer significant
compression potential.

• How to teach LLMs to utilize token sugars effectively?
The shorthand in token sugars introduces new concepts into
the language space of the LLMs. To ensure fluent usage,
LLMs require specialized training on sugarized examples

It is still unclear how to perform such training and what
training strategies are needed.
In the following sections, we will demonstrate how these

challenges can be addressed through a proof-of-concept design
and implementation.

III. METHODOLOGY

This section explains how to apply token sugar to facilitate
the LLM-based code generation process. We focus on Python
as a proof of concept, considering its wide support in existing
LLMs and its reputation for conciseness [9]. If Token Sugar
achieves significant token savings in Python, it is likely to
generalize well to more verbose languages.

Specifically, our methodology consists of three components,
each corresponding to a core design challenge: (1) a shorthand
that optimizes token efficiency while ensuring reversibility, (2)
a data-driven mining pipeline for discovering high-value code
patterns for sugarization, and (3) a training strategy integrating
token sugars into LLMs via sugarizing the training corpus.
In the subsequent sections, we introduce each component in
detail.

A. Shorthand Design

The design space for a shorthand system is vast. As the
first attempt, we propose a heuristic design that aims to satisfy
two core requirements: efficient token usage and deterministic
reversibility. While heuristic in nature, this design serves as a
viable proof of concept—if effective, it paves the way for more
advanced shorthand schemes in the future. Since a code pattern
typically appears within a larger code context, its shorthand
replacement thus coexists with the surrounding code. To allow
the converter to correctly recognize the shorthand in any code
context, its design needs to eliminate the ambiguity with
the standard Python grammar. Specifically, we first introduce
special tokens that do not exist in Python grammar into the
shorthand representation and then use additional or existing
marks to clearly indicate the scope of the shorthand.

Each special token is associated with a unique code pattern
ID. We represent such a token as ⟨ID⟩ in this paper. These
special tokens will be introduced into the LLM tokenizer’s
vocabulary and thus treated as a single atomic token (i.e.,
it will not be further tokenized into multiple sub-tokens).
When the converter recognizes such a token in its given
sugarized code, it will use the ID to retrieve the corresponding
transformation rule for further desugarization. To indicate
the scope of the shorthand, we differentiate the shorthand
format based on the type of code pattern: statements versus
expressions.

1) Shorthand for Statement-Level Patterns: In Python
grammar [10], a statement represents a complete instruction
that can be executed, such as assignments (e.g., ‘x = 5’),
control flow constructs (e.g., ‘for’ loops, ‘if’ statements), or
function/class definitions. Python uses newline characters after
statements, which naturally separates statement-level patterns
from neighboring code. As such, we can directly use newlines
at the start and end of the shorthand to indicate the scope. We
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targets

Module

Assign For

𝑝0 Call AugAssignConstant

0 Name

'range'

Generalized AST

body body

value target iter

funcvalue

id

args

body

Add

target op
value

𝑝0 = 0
 for 𝑝1 in range(𝑝2):
 𝑝0 += 𝑝1

Generalized Code

𝑝1

𝑝2 𝑝0 𝑝1

targets

Module

Assign For

Call AugAssignConstant

0 Name

'range'

Standard AST

body body

value target iter

funcvalue

id

args

body

Add

target op value

Name

'sum'

id

Constant

8

Name

'sum'

id

Name

'num'

id

Name

'sum'

id

value

sum = 0
 for num in range(8):

sum += num

Standard Code

Fig. 3: An example of how a standard AST is generalized. Shadowed nodes are replaced during generalization.

design an inline-delimited format that separates two groups of
placeholders in the code patterns. The left-hand side (LHS)
group includes placeholders corresponding to variables newly
defined in the pattern. For example, the target variable of an
assignment statement (e.g., p0 in Fig. 2) and the loop variable
in a for loop (e.g., p1 in Fig. 2), All the remaining placeholders
in the code pattern are included in the right-hand side (RHS)
group. Placeholders in both groups are ordered based on their
appearance in the pattern.

Formally, let p0, p1, . . . , px denote LHS placeholders, and
px+1, . . . , pn denote RHS placeholders. The shorthand is
constructed as follows, separating two groups using a special
token ⟨ID⟩, and a delimiter character “;” within each group:

p0 ; p1 ; · · · ; px︸ ︷︷ ︸
LHS placeholders

⟨ID⟩︸ ︷︷ ︸
Token

px+1 ; · · · ; pn︸ ︷︷ ︸
RHS placeholders

For instance, the common Python pattern “for p0 in range(p1):
p2.append(p3)” can be represented as ”p0⟨1001⟩p1; p2; p3”.
The placeholder p0 is on the LHS because it is the loop
variable defined in this ‘for’ statement; p1, p2, and p3 are
defined outside the statement.

2) Shorthand for Expression-Level Patterns: In Python
grammar, expression-level patterns can appear within other
code structures, arithmetic operations (e.g., ‘x + 1’), function
calls (e.g., ‘len(s)’), list comprehensions (e.g., ‘[x**2 for x
in range(10)]’), and conditional expressions (e.g., ‘x if x > 0
else -x’), making their boundaries less obvious than statement-
level patterns. To ensure deterministic reversibility, we adopt
a wrapped format that explicitly marks the start and end of
the shorthand using special tokens:

⟨ID⟩︸ ︷︷ ︸
Token

p0 ; p1 ; · · · ; pn︸ ︷︷ ︸
Placeholders

⟨END⟩︸ ︷︷ ︸
Token

Here, we do not need to separate placeholders into LHS and
RHS groups, as Python does not use expressions to define
variables. Compared to the statement-level shorthand, this
structure introduces an end token ⟨END⟩ to explicitly delimit
the shorthand within arbitrary contexts. For example, the arith-
metic pattern “p0 * (p0 + 1)” becomes “⟨1002⟩p0⟨END⟩”.
A code context embedded with this shorthand, such as “x =

⟨1002⟩p0⟨END⟩ + 1”, can be reversed to the original Python
code without ambiguity.

B. Sugarizable Code Pattern Mining

While individual token sugars can optimize specific code
patterns, their isolated impact on overall token reduction is
limited due to the diversity and complexity of real-world
coding tasks. To meaningfully reduce token usage at scale,
we must identify a large and diverse set of code patterns,
from which token sugers are derived. Given the large decision
space, manual selection is impractical, motivating the need
for an automated, data-driven approach to discover high-
value sugarization candidates across diverse coding contexts.
Therefore, we propose a data-driven mining pipeline that
systematically identifies recurrent, token-heavy code patterns
suitable for sugarization. As illustrated in Figure 4, this process
transforms raw source code into generalized abstract syntax
trees (ASTs), applies frequent subgraph mining, and finally
filters candidates based on their token-saving potential.

1) Generalized Abstract Syntax Tree: Our mining task
shares some similarity with prior work on mining code id-
ioms [11]–[14]. While prior studies focus on idioms suitable
for human-oriented syntactic sugar or code reuse, our goal is
to identify patterns that maximize token savings for LLMs.
Such distinctions necessitate a tailored mining pipeline. For
example, prior work on mining code idioms [12], [14] mines
from control flow graphs (CFGs). While CFG-based mining
method is effective for code reuse, it abstracts away syntactic
details by design. For example, in CFG, loops are often
normalized into equivalent branch-and-backedge structures,
where either a for-loop or a while-loop is the same. For LLM
token savings, these distinctions are essential: a for loop may
consume fewer tokens than a while loop for the same logic.
To preserve these token-sensitive details, we mine from ASTs
instead of CFGs.

As found in [11], [12], mining frequent subgraphs directly
on raw graphs parsed from code corpus results in very small
and meaningless idioms. Restriction to the mining scope is
thus necessary to filter out information that is not interesting
and also reduce the search space. For example, to guide the
design of syntactic sugar, OBrien et al. [12] adopt a gener-
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Code

Dataset

Shorthand

parse

Generalized

AST

Raw

Patterns

extract

Criteria Filtering

Common Beneficial Learnable
Mined

Patterns

Token

Sugars

+

Statistic of Dataset used in Our Experiments

15.7k 14.9k 145.8k 6.7k 5.4k 799 799 799

root@b4bfd51d29a5:/workspace/Sugar/new_sugar#  python3 miner/mine.py --use_pool --num_proc 32 --dataset_name 
leetcode --log_level INFO --threshol0 5 --min_reward 0
INFO:root:Extracted 14850 LeetCode solutions
INFO:root:Total tokens: 1970803
Time taken: 158.54305386543274 seconds
INFO:root:Counter before filter: 98729, 35267, 11816
INFO:root:Filter with threshold: 5.0
INFO:root:After Step 1: 3253 stmt, 2635 expr, 823 stmt_head
After Step 2: 5387 left
Total sugar saved: 1015206
Total sugar: 5387
Total tokens: 1970803

Fig. 4: An overview of the mining pipeline.

alized context-free grammar (CFG) that abstracts away noise,
such as project-specific information. Similarly, we generalize
the abstract syntax tree (AST) by abstracting away some
developer-defined elements that are unlikely to be valuable for
sugarization. Specifically, we choose to normalize the nodes
for variable names and uncommon constants and replace them
with generic placeholder nodes, ensuring that each unique
variable or constant retains a consistent placeholder throughout
the AST. An shown in Figure 3, identifiers like “sum” and
“num” and the constant “8” are generalized to p0, p1, and
p2, respectively. However, we preserve a curated set of high-
frequency constants including numeric literals (0, 1, -1, 2, 3,
10), boolean values (True, False), None, and empty strings,
due to their prevalence as semantic markers in Python source
code. Based on our analysis through a large-scale Github code
corpus, starcoderdata [8], these constants are the top 10 most
frequent ones in Python. Form such a generalized AST, we
mine the code patterns.

2) Mining Pipeline: The goal of our mining is to find the
valuable code patterns that can be sugarized to reduce the
token usage of source code. This can be translated to three
requirements:
• Common Usage: the code pattern should be commonly seen

or used by LLMs.
• Saving Potential: the code pattern should reduce token

savings if sugarized.
• Training Data Availability: the code pattern should have

sufficient training data for LLMs to learn.
Guided by these requirements, we propose the mining pipeline,
where an overview is shown in Figure 4. Specifically, given a
code corpus, we parse the code samples into their generalized
ASTs, from which we extract all possible code patterns and
filter them with a series of rules. In the following, we detail the
pipeline of mining code patterns that satisfy the above criteria.
Dataset Selection: Straightforwardly, the code patterns should
be mined from the training data of LLMs. However, the
training dataset of LLMs, such as source code in Github
repositories, is quite different from the tasks given by the users
of an LLM. For example, boilerplate code like “if name
== ’ main ’:” is common in training data but irrelevant
for assistant-style LLM use cases. These irrelevant patterns
can obscure the code structures that truly matter for practical
use cases. To ensure relevance, we prioritize in-distribution
datasets that reflect actual user scenarios. The gold standard

would be production data from deployed LLM applications,
as it directly captures real-world coding patterns. When such
data is unavailable (e.g., for LLM developers without access
to deployment logs), we can use proxy datasets that share
similarity to LLM’s practical use cases. For example, in our
experiment, we use the code dataset collected from Leetcode
to serve as a proxy in-distribution dataset for the function-level
code generation tasks.

Raw Patterns Extraction Given the dataset to be mined,
we first parse its code samples into generalized ASTs, as
described in Section III-B1. Each generalized AST is then
decomposed into connected subtrees, with three structural
constraints to reduce noisy patterns: 1) single node: complete
statement or expression nodes in Python; 2) adjacent nodes:
contiguous node sequences in source code; 3) node heads:
compound statement nodes (e.g., for, while, if) without
their body sub-node. For candidate patterns yielded from this
decomposition, we count their occurrences in the dataset and
only keep the ones that appear in more than k data samples.
This frequency threshold filters out project-specific or rare
patterns, focusing on widely-used ones.

Estimating Saving Potential: Not all code patterns benefit
from sugarization since some are already concise. To pri-
oritize high-impact candidates, we estimate each pattern’s
token-saving potential by comparing token counts between
original patterns and their shorthand equivalents. Specifically,
we instantiate both forms using the same variable names and
measure their token lengths when processed by the target
LLM’s tokenizer. Patterns demonstrating savings below a
threshold of m tokens are discarded.

Checking Training Data Availability: For LLMs to effec-
tively learn the shorthand representations, the mined code
patterns should be supported by sufficient training data, i.e.,
enough training samples can be matched by the code pat-
tern. We address this by filtering candidates based on their
frequency in the target LLM’s training corpus. Specifically,
we retain only those patterns that appear at least n times.

The remaining code patterns are converted into token sugars
through a systematic process. Each pattern is assigned a unique
identifier (ID) and coupled with its corresponding shorthand
following the format defined in Section III-A. These pattern-
shorthand mappings are stored in a structured lookup table,
enabling efficient retrieval during code transformation opera-
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tions using the pattern ID as a key. This bidirectional mapping
system facilitates seamless conversion between standard and
shorthand code representations, serving the sugarization of
training data for model learning and the transformation as ei-
ther a pre-processing or post-processing step in LLM inference
pipelines.

C. Training Dataset Construction

With a curated set of token sugars derived from our mining
pipeline, the next step is to enable LLMs to utilize them during
inference. Rather than altering the model architecture or train-
ing algorithm, our approach integrates token sugars directly
into the training data. This strategy ensures compatibility with
standard training workflows.

Specifically, given a training dataset, we derive a sugarized
dataset by transforming code samples captured by the code
patterns to the corresponding shorthand. During this process,
conflicts arise when multiple token sugars overlap within
a single code region. For example, one pattern may span
lines 1–2 while another matches lines 2–3, creating a conflict
regarding which transformation to apply. To resolve such
conflicts systematically, we model the problem as a weighted
interval scheduling task [15], where each sugarizable pattern
match is treated as an interval. The interval’s range corre-
sponds to the code lines it spans, and its weight represents the
estimated token savings derived during the Estimating Saving
Potential step of our mining pipeline.

To solve this task, we adopt a greedy optimization strategy
that seeks to select a conflict-free subset of transformations
to maximize total token savings. Specifically, we first sort all
token sugar applications by their end line number, ensuring
that we can apply dynamic programming over increasing end
positions. For each application i, we determine p(i), the latest
non-overlapping application that ends before i starts. This can
be computed efficiently using binary search over the sorted
list.

We then define a dynamic programming recurrence:

dp[i] = max(dp[i− 1], dp[p(i)] + wi)

where dp[i] denotes the maximum token savings achievable
using the first i token sugar matches, and wi is the estimated
token saving of the i-th match. The term dp[i−1] corresponds
to skipping the current match, while dp[p(i)]+wi corresponds
to selecting it along with the optimal set of non-overlapping
matches before it. We populate the dp table from 1 to n, where
n is the total number of candidate matches. The final value
dp[n] gives the maximum total token savings. Once the table
is computed, we perform a standard traceback to retrieve the
final set of selected, non-overlapping matches.

Using the selected non-overlapping matches, we rewrite
the code samples by replacing each matched pattern with its
corresponding shorthand. This results in a sugarized training
dataset that is both conflict-free and optimized for token effi-
ciency. To preserve the model’s ability to understand natural,
unsugarized code, we adopt a strategy inspired by methods for
mitigating catastrophic forgetting [16]. Specifically, we retain

25% of the original training samples in their unmodified form.
This mix ensures the model remains fluent in conventional
code while progressively learning to interpret and generate
the sugarized form. Finally, to ensure correct processing of
the shorthand during training, all special tokens of the minded
token sugars are explicitly added to the tokenizer’s vocabulary.
With these preparations, the resulting dataset can be used to
train the LLM. The model thus acquires the ability to seam-
lessly understand and produce token sugar representations,
effectively bridging human-readable code and token-efficient
abstractions.

IV. EXPERIMENT SETUP

Using our proposed method as a demonstration, we ex-
perimentally evaluate the feasibility of Token Sugar. In this
section, we will introduce the settings of the experiments,
including the research questions, datasets and corresponding
mined token sugars, evaluation metrics, and the models used
in the experiments. The rationale behind our setup is driven
by answering the following two research questions:

• RQ1: What is the token reduction capability of mined token
sugar in representing source code?

• RQ2: Can adapted LLMs effectively utilize mined token
sugars, while maintaining their coding capability?

A. Datasets

Due to the limited availability of the production data, we
have to adopt a simulated scenario so that we can get proper
in-distribution code samples as the proxy of the production
data. To be specific, we assume that in the experiments, we
are developing LLMs as coding assistants focusing on the
function-level code generation tasks. Therefore, two kinds of
datasets are involved: the training dataset for LLMs and the
in-distribution dataset for mining token sugars.

For the training data of LLMs, we utilize the Python
subset of starcoderdata [8], a filtered variant of The Stack
dataset [17]. It is a large-scale code corpus for LLM pre-
training, containing over 20 million code files sourced from
open-source GitHub repositories. We keep the code files from
the repositories with over 100 stars, resulting in 623,887 code
files. Notably, this dataset has been filtered to the data samples
in the evaluation benchmark in our experiments.

For the function-level code generation task in our experi-
ments, we use Leetcode solutions [18] to serve as the proxy
for the code that LLMs are required to generate in practice.
This choice is motivated by the fact that Leetcode solutions
primarily consist of function-level implementations, mirroring
the coding patterns commonly encountered in function im-
plementation, such as parameter validation and return value
handling. This dataset, containing 15,734 code samples, is
collected from the Python solutions to coding problems that
have received at least 10 votes on the Leetcode platform.
We also performed string matching against our evaluation
benchmark to prevent potential data leakage.
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B. Mined Token Sugars

Following our proposed method, we mine token sugars
from the LeetCode solutions. During the mining process, we
heuristically set the threshold k for common code patterns
to 5, i.e., each code pattern must be used by at least 5
different solutions. We also set the minimum token saving
of a code pattern m to 1, ensuring each token sugar can
achieve positive token gain. For the training data availability,
we refer to experiences in studies on data poisoning, where
manipulating 0.1% of the training data is sufficient to change
the model’s behavior [19], and set the minimum appearance
of each code pattern in the training data to 0.1% of the
total number of code files, i.e., 623. This set of parameters
finally results in 799 available token sugars. With these token
sugars, we implemented a prototype converter that enables the
sugarization and desugarization process, which will be used
for our experiments, i.e., sugarizing the training dataset and
desugarizing the LLM-generated code. The statistics during
the mining process are reported at the bottom of Figure 4.

C. Evaluation Metrics

We evaluate the model’s performance on the function-
level code generation task with the Pass@1 metric on Hu-
manEval [20]. To compute Pass@1, one code samples are
generated for each problem, and a problem is considered
solved if the generated code passes the unit tests. We re-
port the fraction of problems being successfully solved. The
HumanEval dataset comprises 164 programming problems,
each with a function signature, a docstring, and multiple test
cases. Given the function signature and docstring, the model is
required to generate the code, which is then tested by executing
the test cases. Notably, for the model adapted to token sugars,
we desugarize the generated code to run test cases.

To analyze the token sugar utilization during generation, we
measure three additional metrics: %Saved Tokens, #Sugars,
and #Failed. %Saved Tokens denotes the percentage of tokens
saved by employing LLMs with token sugars. Direct token
count comparisons between two models’ generated code for
the same task can be misleading due to the different imple-
mentations they may choose. Thus, we estimate the %Saved
Tokens by desugaring the generated code from the model and
comparing the token counts before and after this process.
#Sugars denotes the average number of sugars used per
generated sample. #Failed captures the number of cases where
the generated token sugar cannot be successfully desugared.
This metric helps assess whether an LLM has correctly learned
how to use token sugars. For instance, if a shorthand defined
with a single LHS placeholder is incorrectly used with two
LHS variables by LLMs, the desugaring process will fail.

D. Model

In our method, the mined token sugars are learned through
continual pre-training. We adopt three popular LLMs to serve
as the initial model for our experiments, including Pythia,
Llama-3.2, and Qwen-2.5.

TABLE I: Token saving results.

Dataset
#Tokens

Original SimPy Token Sugar Combined

LeetCode 2.0m 1.7m 15.3%↓ 1.7m 15.1%↓ 1.5m 22.4%↓
Humaneval 12.8k 11.1k 13.3%↓ 11.3k 12.9%↓ 10.2k 20.0%↓

• Pythia: Pythia [21] is a suite of LLMs designed close
to currently accepted common practices. We use its 1.4B
version, the largest one in the suite that satisfies our resource
constraint.

• Llama-3.2: Llama-3.2 [22] is a newly released LLM by
Meta, which outperforms many of the available open source
and closed LLMs on common industry benchmarks. Con-
sidering our resource constraint, we use its 1B version.

• Qwen-2.5: Qwen-2.5 [23] is an enhanced version of Al-
ibaba’s Qwen large language models. We use its 1.5B
version for our experiments.

Though their size is relatively small, they suffice to validate
the feasibility of learning token sugars. We will further discuss
the impact of this decision in the discussion section.

E. Implementation Details

In our experiments, we use the Huggingface Transform-
ers [24] library with PyTorch to implement the models. The
models are trained on a machine with 128 vCPUs, 200GB
RAM, and four RTX A6000 GPUs (48GB RAM). For all the
three models, we adopt a batch size 12 with 64 accumulation
steps and 512 context length. The learning rate is set to 1.8e-4
with a cosine decay schedule. During inference, we use the
greedy decoding strategy and a maximum of 512 tokens are
generated.

V. RESULTS

This section reports the experimental results and answers
the research questions.

A. RQ1: Token Reduction

For RQ1, we quantified the token reduction achieved by
Token Sugar across two distinct code sets: our in-distribution
dataset (Leetcode solutions) and the HumanEval ground-truth
code, which represents the code that LLMs are expected to
generate for function-level code generation. It allows us to
assess the token reduction capability of Token Sugar in rele-
vant scenarios. Since Token Sugar is proposed to capture the
unrealized token reduction potential beyond what is achievable
by existing syntax-based methods, we further examined its
complementarity with SimPy [7], a state-of-the-art syntax-
level code simplification method. To enable a comprehensive
analysis, we defined four experimental groups:: Original (our
baseline, code without any processing); Token Sugar (code
processed solely by token sugars); SimPy (code processed
solely by SimPy); and finally, Combined (code processed by
both Token Sugar and SimPy). For the Combined group, we
applied Token Sugar and SimPy together to the code, where
SimPy was modified to be compatible with Token Sugar.
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TABLE II: Model performance results.

Model
Baseline Token Sugar

Pass@1 Pass@1 %Saved Tokens #Sugars #Failed

Pythia 6.7% 6.7% 7.7% 2.3 0

Llama-3.2 12.8% 12.2% 8.3% 1.2 0

Qwen-2.5 26.2% 25.6% 11.2% 2.5 0

Our experimental results demonstrate that Token Sugar
can achieve significant token savings. As shown in Table I,
Token Sugar alone achieves a token reduction of 15.1% on
LeetCode and 12.9% on HumanEval. This demonstrates that
Token Sugar, as a lossless method, effectively reduces the
number of tokens required to represent code without altering
its semantics. More importantly, when used in conjunction
with SimPy (which individually achieves 15.3% and 13.3%
reductions), Token Sugar brings additional savings, pushing
the total reduction to 22.4% on LeetCode and 20.0% on Hu-
manEval. These results validate Token Sugar’s core premise:
addressing verbosity that remains untouched by purely syntac-
tic simplifications. While SimPy reduces tokens by optimiz-
ing syntax rules (e.g., indentation, delimiters), Token Sugar
targets semantically repetitive patterns (e.g., API calls, loop
structures, numeric literals). This reveals the unique role of
Token Sugar in complementing existing techniques to address
the token waste.

Answer to RQ1: Token Sugar achieves significant token
reduction in Python code (12.9–15.1%) while targeting
different verbosity sources, and the combined use with
SimPy unlocks synergistic reductions (20.0–22.4%).

B. RQ2: Model Performance

To answer RQ2, we evaluate how token sugars are utilized
when the trained LLMs generate code and whether training
with a sugarized dataset affects the model’s code generation
capability. Specifically, we perform further pre-training on
three base models (Pythia, Llama-3.2, and Qwen-2.5) using
both sugarized and original training data, respectively. We
then evaluate the performance of the trained models on the
HumanEval dataset using the Pass@1 metric. The outputs
generated in this process are further analyzed to compute the
three metrics previously introduced: %Saved Tokens, #Sugars,
and #Failed.

As shown in Table II, the Pass@1 scores remain remarkably
stable when comparing models trained on the dataset before
and after sugariation. Specifically, Pythia maintains identical
performance (6.7%), while Llama-3.2 and Qwen-2.5 show
only marginal differences of -0.6% and -0.6% respectively.
This minimal performance variance demonstrates that Token
Sugar preserves the essential semantic information needed for
code generation tasks despite its token-saving benefits. Diving
into the usage of token sugars, we observe a consistent level
of token savings across models, with Qwen-2.5 achieving the
highest savings at 11.2%, followed by Llama-3.2 (8.3%) and

Pythia (7.7%). These results indicate that stronger models,
i.e., models with higher Pass@1, tend to leverage token sugars
more effectively, likely due to their enhanced capacity to learn
and apply abstracted patterns during generation. Also, these
values are slightly lower than the token reduction measured
in RQ1, 15.1% on Leetcode and 12.9% on HumanEval, but
remain substantial. This discrepancy is expected, as the model
is not forced to use token sugars and must autonomously learn
when and how to apply them during generation. The observed
savings confirm that the token sugars mined can be practically
adopted by LLMs in code generation tasks.

Moreover, the average number of sugars used per generated
code sample (#Sugars) does not perfectly correlate with their
accuracy reflected through Pass@1. Qwen-2.5, the model with
highest Pass@1, uses the most sugars (an average of 2.5
token sugars per generated code), and achieves the best token
saving (11.2%), suggesting effective and frequent use of token
sugars. Interestingly, Llama-3.2 uses the fewest sugars on
average (1.2 token sugars per generated code), yet achieves a
greater token reduction (8.3%) than Pythia, which uses more
sugars (2.3 token sugars per generated code) but saves slightly
less (7.7%). This suggests that Pythia may overuse sugars
without achieving proportionate savings, possibly due to its
less precise understanding of token sugars. Finally, across all
models, we observe a failure count of zero, indicating that
LLMs understand token sugars well and can generate them
in a valid format, i.e., all the required formats, including the
number and position of placeholders and delimiters. This is
critical for the usability of token sugars in real applications.

Answer to RQ2: Token sugars are actively and reliably
used by LLMs during code generation, causing a negligi-
ble difference in Pass@1 performance while yielding up
to 11.2% token savings without any desugarization fail-
ures. Stronger models show more strategic and efficient
use of token sugars.

VI. RELATED WORK

A. Program Simplification

Program simplification has been widely explored as a means
to improve the efficiency and interpretability of neural code
models [4], [4], [5], [25]–[32]. These methods typically reduce
input length by removing or rewriting less important code
tokens, aiming to reduce the cost of inference or training.
For example, DietCode [5] simplifies code by removing
code tokens that receive the lowest attention scores from
CodeBERT. While effective in improving efficiency or inter-
pretability, these approaches are inherently lossy, removing or
altering information that may be necessary for recovering the
original code. Therefore, such methods are limited to code
understanding tasks like code summarization and retrieval. To
address the limitations of lossy simplification, recent work
has explored reversible simplification through grammar-level
transformations. SimPy [7], for instance, proposes using an
AI-oriented syntax to reformat code in a way that preserves
semantics while improving model efficiency. However, this
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approach is confined to syntactic transformations and does not
reduce deeper semantic redundancies that arise from repetitive
logic or idiomatic patterns. In this paper, we fill this gap by
proposing Token Sugar, a reversible program simplification
method at the semantic level.

B. Code Idiom Mining

Code idiom mining [33] focuses on identifying recurring
code patterns that encapsulate specific semantic roles. Usu-
ally, such approaches focus on mining code idioms to as-
sist human developers by promoting code reuse, improving
readability, and informing language design [12]–[14], [33]–
[37]. For example, IdioMine [14] automatically extracts well-
formed idioms from Java projects to streamline programming
practices. O’Brien et al. [12] propose a data-driven approach
to syntactic sugar design by mining frequent subgraphs in Java
methods, aiming to simplify common code idioms. Since AI
has become prevalent in code-related tasks, some studies [34],
[38], [39] also explore code idioms from a model-centric
perspective. Among these studies, the works by Iyer et al. [34]
and Shin et al. [38] demonstrate that code idioms can improve
the efficiency of AI models in the code generation task.
However, their methods are primarily designed for traditional
Seq2Seq models with grammar-rule-based decoding, where
code generation is framed as a step-by-step construction of
ASTs, typically by adding one sub-node or edge at a time. In
contrast, modern LLMs, such as Deepseek [40], extend a linear
sequence of tokens one by one, without explicit structural
constraints. This paradigm shift raises new challenges and
opportunities for leveraging code idioms in LLMs, particularly
in terms of how idioms can be learned, represented, and
utilized effectively.

VII. DISCUSSION

A. Limitations

Constrained Model Size The model selection in our exper-
iments is restricted by our computational resources, limiting
our evaluation to models with around 1B parameters. These
models are relatively modest in scale. However, while the
model size is expanding, the fundamental issue of computation
waste caused by redundant source code elements remains
unaddressed. Therefore, the insights derived from our ex-
periments with smaller models are still highly relevant for
understanding inefficiency issues in larger models.
Standalone Token Sugar Mining In RQ1, we reveal that
Token Sugar achieves significant token savings, both as a stan-
dalone method and when combined with existing techniques
like SimPy. However, the token sugars used in our experiments
were mined from the original version of the code, not from
the SimPy-processed variant. This may lead to overlapping
or redundant effects when combined with SimPy, thereby
resulting in an underestimation of Token Sugar’s contribution.
Python Focus Similar to SimPy, our research primarily real-
izes Token Sugar in Python, a popular and concise program-
ming language. It has successfully revealed the potential and

feasibility of this general concept. Since programming lan-
guages differ in syntax, verbosity, and structural conventions,
our realization may not directly transfer to other languages.
Further work to implement Token Sugar in multiple languages
is feasible and may offer even greater opportunities for token
reduction.

B. Overhead for Desugaring Token Sugars

An essential part of our approach is the desugarization
process, where token sugars in the generated code are ex-
panded back to their original form for execution and human
readability. While introducing a transformation step may raise
concerns about additional computational overhead, we find
that in practice, this cost is negligible. Our experimental
implementation uses an unoptimized Python script to perform
desugarization. Even under this baseline setup, the average
time to process a single token sugar is 1.3 milliseconds, a
comparable speed to SimPy’s code converter. In production
environments, this step can be further optimized through more
efficient implementations or integration into the model-serving
pipeline. Therefore, the cost of desugarization is not a practical
barrier to deployment.

C. Access to Production Data

Our method requires access to the code usage data of LLMs,
or data that closely approximates it, to effectively mine token
sugars. When such data is unavailable due to privacy, legal,
or infrastructural constraints, the method may not be able to
achieve optimal token savings. However, it is important to
emphasize that the primary beneficiaries and intended users
of Token Sugar are platforms that provide LLM-based code
generation services. These platforms are typically in a unique
position: they possess both the infrastructure to train large
models and continuous access to vast amounts of source code
generated or seen by LLMs, collected through interactions
with their deployed coding assistants [19]. For example, ac-
cording to their official documents [41]–[43], Github Copilot,
Cursor, and Amazon CodeWhisperer are collecting data from
permissive users. More importantly, they face substantial com-
putational costs at inference time and have strong motivations
to reduce them. Therefore, while our method assumes access
to production-like data, this is not a practical limitation for its
core audience.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduce the concept of Token Sugar, a
novel abstraction mechanism aimed at reducing the verbosity
of programming languages for LLMs. We further realized this
idea with a systematic attempt, which successfully extracted
799 token sugars and integrated them into three mainstream
LLMs via a sugarized training dataset. Through a series
of empirical studies guided by practical implementation and
evaluation, we demonstrate the feasibility, scalability, and
effectiveness of Token Sugar.

As a newly proposed direction, Token Sugar opens up many
unanswered questions that extend beyond the scope of our
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current proof-of-concept implementation. For instance, train-
ing LLMs to understand and generate token sugars through
continual pretraining can be resource-intensive. Future work
could explore more efficient approaches, such as parameter-
efficient fine-tuning methods, to reduce the computational cost.
We encourage the research community to further investigate
this promising area.
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